scholarly journals Studies on the glycosylation of hydroxylysine residues during collagen biosynthesis and the subcellular localization of collagen galactosyltransferase and collagen glucosyltransferase in tendon and cartilage cells

1975 ◽  
Vol 152 (2) ◽  
pp. 291-302 ◽  
Author(s):  
Richard Harwood ◽  
Michael E. Grant ◽  
David S. Jackson

1. The glycosylation of hydroxylysine during the biosynthesis of procollagen by embryonic chick tendon and cartilage cells was examined. When free and membrane-bound ribosomes isolated from cells labelled for 4min with [14C]lysine were assayed for hydroxy[14C]lysine and hydroxy[14C]lysine glycosides, it was found that hydroxylation took place only on membrane-bound ribosomes and that some synthesis of galactosylhydroxy[14C]lysine and glucosylgalactosylhydroxy[14C]lysine had occurred on the nascent peptides. 2. Assays of subcellular fractions isolated from tendon and cartilage cells labelled for 2h with [14C]lysine demonstrated that the glycosylation of procollagen polypeptides began in the rough endoplasmic reticulum. 14C-labelled polypeptides present in the smooth endoplasmic reticulum and Golgi fractions were glycosylated to extents almost identical with the respective secreted procollagens. 3. Assays specific for collagen galactosyltransferase and collagen glucosyltransferase are described, using as substrate chemically treated bovine anterior-lens-capsule collagen. 4. When homogenates were assayed for the collagen glycosyltransferase activities, addition of Triton X-100 (0.01%, w/v) was found to stimulate enzyme activities by up to 45%, suggesting that the enzymes were probably membrane-bound. 5. Assays of subcellular fractions obtained by differential centrifugation for collagen galactosyltransferase activity indicated the specific activity to be highest in the microsomal fractions. Similar results were obtained for collagen glucosyltransferase activity. 6. When submicrosomal fractions obtained by discontinuous-sucrose-density-gradient-centrifugation procedures were assayed for these enzymic activities, the collagen galactosyltransferase was found to be distributed in the approximate ratio 7:3 between rough and smooth endoplasmic reticulum of both cell types. Similar determinations of collagen glucosyltransferase indicated a distribution in the approximate ratio 3:2 between rough and smooth microsomal fractions. 7. Assays of subcellular fractions for the plasma-membrane marker 5′-nucleotidase revealed a distribution markedly different from the distributions obtained for the collagen glycosyltransferase. 8. The studies described here demonstrate that glycosylation occurs early in the intracellular processing of procollagen polypeptides rather than at the plasma membrane, as was previously suggested.

1977 ◽  
Vol 161 (2) ◽  
pp. 405-418 ◽  
Author(s):  
R Harwood ◽  
A H Merry ◽  
D E Woolley ◽  
M E Grant ◽  
D S Jackson

1. The molecular weights of chick tendon and cartilage procollagens, and their constituent polypeptides, were determined by gel filtration and gel electrophoresis. The values obtained are in good agreement and indicate that the mol.wts. of the secreted procollagens (types I and II) and their individual pro-alpha-chains are of the order of 405 000-445 000 and 137 000-145 000 respectively.2. Digestion of tendon procollagen with human rheumatoid synovial collagenase gave products consistent with the presence of large non-helical peptide extensions at both N-and C-termini. Electrophoretic analysis gave apparent mol.wts. of 17 500 and 36 000 for the respective N- and C-terminal extensions of pro-alpha1(I)-and pro-alpha2-chains, and inter-chain disulphide bonds were restricted to the C-terminal location. 3. During the biosynthesis of procollagen by tendon and cartilage cells a close correlation was observed between the extent of inter-chain disulphide bonding and the proportion of procollagen polypeptides having a triple-helical conformation. These processes appeared to commence in the rough endoplasmic reticulum and be completed in the smooth endoplasmic reticulum, but the rate at which they occur in cartilage cells is markedly slower than that found in tendon cells. 4. When the intracellular [14C]procollagen polypeptides present in the rough-endoplasmic-reticulum fractions of tendon and cartilage cells were analysed under non-reducing conditions on agarose/polyacrylamide composite gels, no significant pools of dimeric intermediates were detected. 5. In both cell types, inter-chain disulphide-bond formation occurred even when hydroxylation, and hence triple-helix formation, was inhibited. The presence of pro-alpha1- and pro-alpha2-components in a ratio of 2:1 in the disulphide-linked unhydroxylated procollagen isolated from tendon cells demonstrated that correct chain association occurs in the absence of hydroxylation. This observation is consistent with a model for the assembly of pro-gamma112-chains in which the recognition and selection of pro-alpha1-and pro-alpha2-chains in a 2:1 ratio are directed by the non-helical C-terminal extension peptides of tendon procollagen.


1992 ◽  
Vol 285 (1) ◽  
pp. 153-159 ◽  
Author(s):  
I J Cartwright ◽  
J A Higgins

We have developed a method for measurement of apolipoprotein (apo) B-48 and apo B-100 in blood and subcellular fractions of rat liver based on SDS/PAGE followed by quantitative immunoblotting using 125I-Protein A. Standard curves were prepared in each assay using apo B prepared from total rat lipoproteins by extraction with tetramethylurea. Subcellular fractions (rough and smooth endoplasmic reticulum and Golgi fractions) were prepared from rat liver and separated into membrane and cisternal-content fractions. For quantification, membrane fractions were solubilized in Triton X-100, and the apo B was immunoprecipitated before separation by SDS/PAGE and immunoblotting. Content fractions were concentrated by ultrafiltration and separated by SDS/PAGE without immunoprecipitation. Quantification of apo B in subcellular fractions and detection of apo B by immunoblotting yielded consistent results. In all fractions apo B-48 was the major form, accounting for approximately three-quarters of the total apo B. By using marker enzymes as internal standards, it was calculated that all of the apo B was recovered in the endoplasmic reticulum and Golgi fractions, with approximately 80% of each form of apo B in the endoplasmic reticulum. More than 90% of the apo B of the rough- and smooth-endoplasmic-reticulum fractions was membrane-bound, whereas approx. 33 and 15% of the apo B of the cis-enriched Golgi fractions and trans-enriched Golgi fractions respectively were membrane-bound.


1975 ◽  
Vol 148 (1) ◽  
pp. 129-138 ◽  
Author(s):  
R Harwood ◽  
A K Bhalla ◽  
M E Grant ◽  
D S Jackson

1. Isolation of free and membrane-bound ribosomes from embryonic chick sternal-cartilage cells labelled for 4min with [14C]proline and their subsequent analysis for hydroxy[14C]proline indicated that cartilage procollagen biosynthesis occurs on bound ribosomes. 2. Nascent procollagen polypeptides on bound ribosomes isolated from cells labelled with [14C]lysine were found to contain hydroxy[14C]lysine indicating that hydroxylation of lysine commences while the growing chains are still attached to the ribosomes. 3. Analysis of bound ribosomes labelled with either [14C]proline or [14C]lysine on sucrose density gradients indicated that cartilage procollagen is synthesized on large polyribosomes in the range 250-400S. 4. Microsomal preparations isolated from cells pulse-labelled for 4 min with [14C]proline were used to determine the direction of release of nascent procollagen polypeptides. Puromycin induced the vectorial release of nascent procollagen polypeptides into the microsomal vesicles suggesting that the first step in the secretion of procollagen polypeptides is their transfer from the ribosomes through the membrane of the endoplasmic reticulum into the cisternal space. 5. The procollagen polypeptides secreted by cartilage cells were shown to be linked by inter-chain disulphide bonds. 6. Examination of the state of aggregation of pro-α chains in subcellular fractions isolated from cartilage cells labelled with [14C]proline for various periods of time have provided data on the timing and location of inter-chain disulphide-bond formation. This process commences in the rough endoplasmic reticulum after the release of completed pro-α chains from membrane-bound ribosomes. Pro-α chains isolated from fractions of smooth endoplasmic reticulum were virtually all present as disulphide-bonded aggregates, suggesting that either disulphide bonding is completed in this cellular compartment, or that procollagen needs to be in a disulphide-bonded form to be transferred to this region of the endoplasmic reticulum. 7. Comparison of these results with previously published data on disulphide bonding in tendon cells suggest that the rate of inter-chain disulphide-bond formation is significantly slower in cartilage cells.


2002 ◽  
Vol 13 (12) ◽  
pp. 4221-4230 ◽  
Author(s):  
Liyu Tu ◽  
Tung-Tien Sun ◽  
Gert Kreibich

Much of the lower urinary tract, including the bladder, is lined by a stratified urothelium forming a highly differentiated, superficial umbrella cell layer. The apical plasma membrane as well as abundant cytoplasmic fusiform vesicles of the umbrella cells is covered by two-dimensional crystals that are formed by four membrane proteins named uroplakins (UPs) Ia, Ib, II, and III. UPs are synthesized on membrane-bound polysomes, and after several co- and posttranslational modifications they assemble into planar crystals in a post-Golgi vesicular compartment. Distension of the bladder may cause fusiform vesicles to fuse with the apical plasma membrane. We have investigated the early stages of uroplakin assembly by expressing the four uroplakins in 293T cells. Transfection experiments showed that, when expressed individually, only UPIb can exit from the endoplasmic reticulum (ER) and move to the plasma membrane, whereas UPII and UPIII reach the plasma membrane only when they form heterodimeric complexes with UPIa and UPIb, respectively. Heterodimer formation in the ER was confirmed by pulse-chase experiment followed by coimmunoprecipitation. Our results indicate that the initial building blocks for the assembly of crystalline uroplakin plaques are heterodimeric uroplakin complexes that form in the ER.


1976 ◽  
Vol 22 (1) ◽  
pp. 173-197
Author(s):  
J.A. Higgins

During proliferation of smooth endoplasmic reticulum (SER) induced by phenobarbital the specific activity of acyltransferases of the smooth microsomes increases, there is a transient rise in the phospholipid/protein ratio of these membranes, and an increased incorporation of [14C]glycerol into smooth-membrane phospholipid. Microsomes separated into subfractions on 2 gradients exhibited a heterogeneous distribution of these characteristics, indicating a non-uniform distribution of the site of phospholipid synthesis in the ER under these conditions. Cytochemical localization of acyltransferases on whole liver and smooth and rough microsomes confirmed this heterogeneity, and indicated that the distribution of this activity was not restricted to any morphologically distinct site in the ER of the intact cell. After 4 days of phenobarbital treatment the increased membrane is restricted to lighter subfractions and is similar in distribution to that of increased acyltransferase activity. These results indicate that the synthesis of membrane phospholipid and the growth of the SER in response to phenobarbital is not uniform but occurs at randomly dispersed sites in the SER while proteins may be added preferentially at these sites resulting in a final uniform distribution.


1978 ◽  
Vol 31 (1) ◽  
pp. 165-178
Author(s):  
J.A. Grasso ◽  
A.L. Sullivan ◽  
S.C. Chan

Erythropoietic cells of 5 species, including man, contain endoplasmic reticulum present as individual cisternae or tubules scattered throughout the cytoplasm of all stages except mature RBCs. The endoplasmic reticulum is mainly agranular but occurs frequently as a variant of granular ER which is characterized by an asymmetrical and irregular distribution of ribosomes along one cytoplasmic face. In most cells, the endoplasmic reticulum occurs in close proximity to mitochondria or the plasma membrane, suggesting that the organelle may be involved in functions related to these structures, e.g. haem biosynthesis. Endoplasmic reticulum is more abundant in early than in late erythroid cells. Its exact role in RBC development is unclear. Since endoplasmic reticulum could account for ‘plasma membrane-bound ribosomes’ reported in lysed reticulocytes, studies were performed which ruled out this possibility and which suggested that such ribosomes were an artifact of the lysing conditions. Hypotonic lysis in less than 20 vol. of magnesium-containing buffers yielded ghosts variably contaminated by ribosomes and other structures. Lysis of reticulocytes in 20–30 vol. of magnesium-free buffer or homogenization of whole cells or crude membrane fractions in hypotonic buffer removed virtually all contaminating ribosomes from the purified membrane fraction.


1977 ◽  
Vol 55 (4) ◽  
pp. 408-414 ◽  
Author(s):  
J. C. Jamieson

Ultrasonic extracts of rough and smooth endoplasmic reticulum fractions and Golgi fractions from rat liver were examined by immunoelectrophoresis using antiserum to α1-acid glycoprotein. Rough endoplasmic reticulum fractions contained only sialic acid free α1-acid glycoprotein, whereas smooth endoplasmic reticulum and Golgi fractions also contained sialic acid containing α1-acid glycoprotein. Determination of the sialic acid contents of immune precipitates isolated from the extracts suggested that the Golgi complex was the main site of addition of sialic acid to α1-acid glycoprotein. Immunological studies on puromycin extracts of polyribosomes showed that polypeptide chains of α1-acid glycoprotein and albumin were assembled mainly on membrane-bound polyribosomes. Evidence is presented from incorporation studies with labelled leucine and glucosamine that initial glycosylation of α1-acid glycoprotein occurs mainly or entirely after release of nascent polypeptide from the ribosomal site.


1983 ◽  
Vol 213 (1) ◽  
pp. 99-105 ◽  
Author(s):  
S R Wilson ◽  
M D Houslay

Dithiothreitol led to the activation and solubilization of the cyclic nucleotide phosphodiesterase activities associated with the smooth and various rough subfractions of rat liver endoplasmic reticulum. The activity in each of the subfractions exhibited somewhat different time courses, and sensitivities to dithiothreitol concentration, in respect of their solubilization and activation. Both activation and solubilization by dithiothreitol could be blocked by either thiol proteinase inhibitors or excess bovine serum albumin. Freeze-thaw solubilization was not blocked by the thiol proteinase inhibitor antipain and did not lead to the activation of the enzyme. After dithiothreitol-induced solubilization, all of the enzymes exhibited non-linear Lineweaver-Burk plots indicative of apparent negative co-operativity. In contrast, after freeze-thaw solubilization the enzyme in the smooth-endoplasmic-reticulum-plus-Golgi fraction still obeys Michaelis kinetics, as does the membrane-bound enzyme. It is possible to mimic the action of dithiothreitol in solubilizing and activating the enzyme by limited proteolysis with trypsin. Triton X-100 is highly efficient at solubilizing these enzymes, yet has little effect on their activities. Charged detergents exhibit highly selective effects on the enzymes as regards their solubilization and activity expressed.


1977 ◽  
Vol 55 (8) ◽  
pp. 876-885 ◽  
Author(s):  
Patricia L. Chang ◽  
John R. Riordan ◽  
Mario A. Moscarello ◽  
Jennifer M. Sturgess

To study membrane biogenesis and to test the validity of the endomembrane flow hypothesis, incorporation of 32P and [Me-3H]choline in vivo into membranes of the rat liver was followed. Rough microsomal, Golgi-rich, and plasma membrane fractions were monitored with marker enzyme assays and shown with morphometric analysis to contain 82% rough microsomes, at least 70% Golgi complexes, and 88% plasma membranes, respectively. Membrane subfractions from the rough microsomal and Golgi-rich fractions were prepared by sonic disruption.At 5 to 30 min after 32P injection, the specific radioactivity of phosphatidylcholine was higher in the rough microsomal membranes than in the Golgi membranes. From 1 to 3 h, the specific activity of phosphatidylcholine in Golgi membranes became higher and reached the maximum at about 3 h. Although the plasma membrane had the lowest specific radioactivity throughout 0.25–3 h, it increased rapidly thereafter to attain the highest specific activity at 5 h. Both rough microsomal and plasma membranes reached their maxima at 5 h.The specific radioactivity of [32P]phosphatidylethanolamine in the three membrane fractions was similar to that of [32P]phosphatidylcholine except from 5 to 30 min, when the specific radioactivity of phosphatidylethanolamine in the Golgi membranes was similar to the rough microsomal membranes.At 15 min to 5 h after [Me-3H]choline injection, more than 90% of the radioactivity in all the membranes was acid-precipitable. The specific radioactivities of the acid-precipitated membranes, expressed as dpm per milligram protein, reached the maximum at 3 h. After [Me-3H]choline injection, the specific radioactivity of phosphatidylcholine separated from the lipid extract of the acid-precipitated membranes (dpm per micromole phosphorus) did not differ significantly in the three membrane fractions. The results indicated rapid incorporation of choline into membrane phosphatidylcholine by the rough endoplasmic reticulum, Golgi, and plasma membranes simultaneously.The data with both 32P and [Me-3H]choline precursors did not support the endomembrane flow hypothesis. The Golgi complexes apparently synthesized phosphatidylethanolamine and incorporated choline into phosphatidylcholine as well as the endoplasmic reticulum. The results are discussed with relevance to current hypotheses on the biogenesis and transfer of membrane phospholipids.


Sign in / Sign up

Export Citation Format

Share Document