Pharmacologic normalization of pathogenic dosage underlying genetic diseases: an overview of the literature and path forward

2019 ◽  
Vol 3 (1) ◽  
pp. 53-62
Author(s):  
Mathieu B. Poirier ◽  
Jeremiah Hadwen ◽  
Alex MacKenzie

Abstract Most monogenic disorders are caused by a pathologic deficit or excess of a single transcript and/or protein. Given that small molecules, including drugs, can affect levels of mRNA and protein, the pharmacologic normalization of such pathogenic dosage represents a possible therapeutic approach for such conditions. Here, we review the literature exploring pharmacologic modulation of mRNA and/or protein levels for disorders with paralogous modifier genes, for haploinsufficient disorders (insufficient gene-product), as well as toxic gain-of-function disorders (surplus or pathologic gene-product). We also discuss challenges facing the development of rare disease therapy by pharmacologic modulation of mRNA and protein. Finally, we lay out guiding principles for selection of disorders which may be amenable to this approach.

2020 ◽  
Vol 21 (3) ◽  
pp. 777 ◽  
Author(s):  
Lewis E. Fry ◽  
Caroline F. Peddle ◽  
Alun R. Barnard ◽  
Michelle E. McClements ◽  
Robert E. MacLaren

RNA editing aims to treat genetic disease through altering gene expression at the transcript level. Pairing site-directed RNA-targeting mechanisms with engineered deaminase enzymes allows for the programmable correction of G>A and T>C mutations in RNA. This offers a promising therapeutic approach for a range of genetic diseases. For inherited retinal degenerations caused by point mutations in large genes not amenable to single-adeno-associated viral (AAV) gene therapy such as USH2A and ABCA4, correcting RNA offers an alternative to gene replacement. Genome editing of RNA rather than DNA may offer an improved safety profile, due to the transient and potentially reversible nature of edits made to RNA. This review considers the current site-directing RNA editing systems, and the potential to translate these to the clinic for the treatment of inherited retinal degeneration.


2019 ◽  
Vol 46 (5) ◽  
pp. 4809-4816 ◽  
Author(s):  
Amin Soltani ◽  
Samira Torki ◽  
Milad Sabzevary Ghahfarokhi ◽  
Mohammad Saied Jami ◽  
Mahdi Ghatrehsamani

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wangming Zhang ◽  
Shuang Yang ◽  
Jinhe Liu ◽  
Linchun Bao ◽  
He Lu ◽  
...  

Abstract Background The high expression of BLM (Bloom syndrome) helicase in tumors involves its strong association with cell expansion. Bisbenzylisoquinoline alkaloids own an antitumor property and have developed as candidates for anticancer drugs. This paper aimed to screen potential antiproliferative small molecules from 12 small molecules (the derivatives of bisbenzylisoquinoline alkaloids tetrandrine and fangchinoline) by targeting BLM642–1290 helicase. Then we explore the inhibitory mechanism of those small molecules on proliferation of MDA-MB-435 breast cancer cells. Methods Fluorescence polarization technique was used to screen small molecules which inhibited the DNA binding and unwinding of BLM642–1290 helicase. The effects of positive small molecules on the ATPase and conformation of BLM642–1290 helicase were studied by the malachite green-phosphate ammonium molybdate colorimetry and ultraviolet spectral scanning, respectively. The effects of positive small molecules on growth of MDA-MB-435 cells were studied by MTT method, colony formation and cell counting method. The mRNA and protein levels of BLM helicase in the MDA-MB-435 cells after positive small molecule treatments were examined by RT-PCR and ELISA, respectively. Results The compound HJNO (a tetrandrine derivative) was screened out which inhibited the DNA binding, unwinding and ATPase of BLM642–1290 helicase. That HJNO could bind BLM642–1290helicase to change its conformationcontribute to inhibiting the DNA binding, ATPase and DNA unwinding of BLM642–1290 helicase. In addition, HJNO showed its inhibiting the growth of MDA-MB-435 cells. The values of IC50 after drug treatments for 24 h, 48 h and 72 h were 19.9 μmol/L, 4.1 μmol/L and 10.9 μmol/L, respectively. The mRNA and protein levels of BLM helicase in MDA-MB-435 cells increased after HJNO treatment. Those showed a significant difference (P < 0.05) compared with negative control when the concentrations of HJNO were 5 μmol/L and 10 μmol/L, which might contribute to HJNO inhibiting the DNA binding, ATPase and DNA unwinding of BLM helicase. Conclusion The small molecule HJNO was screened out by targeting BLM642–1290 helicase. And it showed an inhibition on MDA-MB-435 breast cancer cells expansion.


2015 ◽  
Vol 3 (5) ◽  
pp. 2012-2018 ◽  
Author(s):  
Jason A. Michel ◽  
William H. Morris III ◽  
Charles M. Lukehart

Shape selectivity between cubic and tetrahedral Pt colloidal nanocrystals is achieved simply by selection of [Pt(OH)6]2− or [PtI6]2−, respectively, as the Pt precursor in basic aqueous solutions.


2019 ◽  
Vol 12 (594) ◽  
pp. eaat9797 ◽  
Author(s):  
António J. M. Ribeiro ◽  
Sayoni Das ◽  
Natalie Dawson ◽  
Rossana Zaru ◽  
Sandra Orchard ◽  
...  

The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.


Author(s):  
Maliha Sadick ◽  
Daniel Overhoff ◽  
Bettina Baessler ◽  
Naema von Spangenberg ◽  
Lena Krebs ◽  
...  

Background Peripheral vascular anomalies represent a rare disease with an underlying congenital mesenchymal and angiogenetic disorder. Vascular anomalies are subdivided into vascular tumors and vascular malformations. Both entities include characteristic features and flow dynamics. Symptoms can occur in infancy and adulthood. Vascular anomalies may be accompanied by characteristic clinical findings which facilitate disease classification. The role of periinterventional imaging is to confirm the clinically suspected diagnosis, taking into account the extent and location of the vascular anomaly for the purpose of treatment planning. Method In accordance with the International Society for the Study of Vascular Anomalies (ISSVA), vascular anomalies are mainly categorized as slow-flow and fast-flow lesions. Based on the diagnosis and flow dynamics of the vascular anomaly, the recommended periinterventional imaging is described, ranging from ultrasonography and plain radiography to dedicated ultrafast CT and MRI protocols, percutaneous phlebography and transcatheter angiography. Each vascular anomaly requires dedicated imaging. Differentiation between slow-flow and fast-flow vascular anomalies facilitates selection of the appropriate imaging modality or a combination of diagnostic tools. Results Slow-flow congenital vascular anomalies mainly include venous and lymphatic or combined malformations. Ultrasound and MRI and especially MR-venography are essential for periinterventional imaging. Arteriovenous malformations are fast-flow vascular anomalies. They should be imaged with dedicated MR protocols, especially when extensive. CT with 4D perfusion imaging as well as time-resolved 3D MR-A allow multiplanar perfusion-based assessment of the multiple arterial inflow and venous drainage vessels of arterio-venous malformations. These imaging tools should be subject to intervention planning, as they can reduce procedure time significantly. Fast-flow vascular tumors like hemangiomas should be worked up with ultrasound, including color-coded duplex sonography, MRI and transcatheter angiography in case of a therapeutic approach. In combined malformation syndromes, radiological imaging has to be adapted according to the dominant underlying vessels and their flow dynamics. Conclusion Guide to evaluation of flow dynamics in peripheral vascular anomalies, involving vascular malformations and vascular tumors with the intention to facilitate selection of periinterventional imaging modalities and diagnostic and therapeutic approach to vascular anomalies. Key Points:  Citation Format


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3211-3211
Author(s):  
Antonella Caivano ◽  
Francesco La Rocca ◽  
Ilaria Laurenzana ◽  
Alessandra Favole ◽  
Irma Airoldi ◽  
...  

Abstract Introduction Multiple myeloma (MM) remains an incurable malignancy despite important recent advances in treatments. Neo-vascularization entails a crucial aspect of interactions between neoplastic plasma cells (PCs) and their microenvironment. Without it, MM would be unable to grow and progress, and would probably regress to a low-mass steady-state comparable to monoclonal gammopathy of undetermined significance (MGUS). To overcome drug resistance and improve clinical response to novel therapeutic approaches halting both PC growth and the increased bone marrow (BM) microvascular density are needed. In this setting, monoclonal antibodies against MM-specific cell surface antigens represent a promising therapeutic approach, which is however hampered by a lack of appropriate membrane target structures expressed across all MM cells. The Eph receptors, a large family of receptor tyrosine kinases, have been implicated in many processes involved in malignancy, including alteration of the tumour microenvironment, and in angiogenesis, in both of which EphA3 likely plays an active role. Interestingly, the over-expression of EphA3 is sufficient to confer tumorigenic potential, although probably further mechanisms can occur to abnormally activate the receptor. A first-in-class engineered IgG1 antibody targeting the EphA3 was developed and it is now under phase I clinical trials in USA and Australia for the treatment of EphA3 over-expressing hematological myeloid malignancies refractory to conventional treatment. Methods We investigated the EphA3 role in MM patients in order to define whether it may represent a potential new molecular target for a novel therapeutic approach with a specific anti EphA3 monoclonal antibody. The EphA3 expression was studied through a comparative proteomic analysis between BM endothelial cells (ECs) of patients with MM (MMECs) or with MGUS (MGECs), of control subjects (normal ECs). Moreover, the effects of anti EphA3 antibody in MM were studied in vitro and in vivo in a MM xenograft mouse model. After written informed consent, BM aspirates were collected from 26 MM and 6MGUS patients. Normal ECs were derived from 5 BM aspirates of subjects with anemia due to iron or vitamin B12 deficiency. We analyzed both mRNA and protein levels of EphA3 in normal ECs, MGECs and MMECs and in MM cell lines by absolute RT-PCR and by WB coupled to immunofluorescence and FACS analysis respectively. Immunoistochemistry was also performed on MM BM biopsies. The biological effects of EphA3 targeting were studied in vitro silencing (siRNA) the EphA3 mRNA in MMECs and using the anti EphA3 antibody testing them in series of in vitro functional assays including viability, apoptosis, adhesion, migration, wound healing and angiogenesis tests. We further examined the inhibitory capacity of anti-EphA3 Ab on tumor growth in SCID mice bearing MM tumor cell xenografts. Finally, we assessed morphology, vessel density, and apoptosis of excised xenotransplanted tumors. Results Briefly, our data showed that EphA3 mRNA and protein levels are progressively increased from ECs to MGECs, reaching the highest values in MMECs. EphA3 stained intensely and diffusely MM microvessels and PC in MM BM biopsies. The EphA3siRNA MMECs revealed a protein level reduction of approximately 80% when compared to the control. We not detected viability or apoptotic defects, whereas in vitro adhesion, migration and angiogenesis inhibition was evident when compared to the not silenced counterpart. The anti EphA3 antibody inhibited MMECs migration and reduced in vitro MM angiogenesis. In particular, tumour masses developed in xenograft mice treated with anti-EphA3 Abs were smaller in size and showed foci of ischemic-hemorrhagic necrosis, in association with a significant (P < 0.05) reduction in the number of intact tumor microvessels. The proliferative activity was not significantly different from that observed in tumors from untreated or control isotype treated mice, while the apoptotic index was significantly (P < 0.05) increased in comparison with tumors from both groups of mice. Conclusions In this study we have characterized the role of the EphA3in MM patients, providing in vitro and in vivo experimental evidences that support the possibility of using EphA3 as a new molecular target for MM. Disclosures: No relevant conflicts of interest to declare.


Allergy ◽  
1993 ◽  
Vol 48 (8) ◽  
pp. 624-626 ◽  
Author(s):  
N. Chand ◽  
J. E. Harrison ◽  
S. M. Rooney ◽  
K. W. Nolan ◽  
C. L. Vine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document