scholarly journals An interesting case of the formation and evolution of a barred galaxy in the cosmological context

2020 ◽  
Vol 642 ◽  
pp. L12
Author(s):  
Ewa L. Łokas

Elongated, bar-like galaxies without a significant disk component, with little rotation support and no gas, often form as a result of tidal interactions with a galaxy cluster, as was recently demonstrated using the IllustrisTNG-100 simulation. Galaxies that exhibit similar properties are, however, also found to be infalling into the cluster for the first time. We use the same simulation to study in detail the history of such a galaxy over cosmic time in order to determine its origin. The bar appears to be triggered at t = 6.8 Gyr by the combined effect of the last significant merger with a subhalo and the first passage of another dwarf satellite, both ten times less massive than the galaxy. The satellites deposit all their gas in the galaxy, contributing to its third and last star-formation episode, which perturbs the disk and may also contribute to the formation of the bar. The galaxy then starts to lose its gas and dark matter due to its passage near a group of more massive galaxies. The strongest interaction involves a galaxy 22 times more massive, leaving the barred galaxy with no gas and half of its maximum dark matter mass. During this time, the bar grows steadily, seemingly unaffected by the interactions, although they may have aided its growth by stripping the gas. The studied galaxy, together with two other similar objects briefly discussed in this Letter, suggest the existence of a new class of early-type barred galaxies and thereby demonstrate the importance of interactions in galaxy formation and evolution.

2011 ◽  
Vol 20 (10) ◽  
pp. 1771-1777
Author(s):  
HOUJUN MO

Given that dark matter is gravitationally dominant in the universe, and that galaxy formation is closely related to dark matter halos, a key first step in understanding galaxy formation and evolution in the CDM paradigm is to quantify the galaxy-halo connection for galaxies of different properties. Here I will present results about the halo/galaxy connection obtained from two different methods. One is based on the conditional luminosity function, which describes the occupation of galaxies in halos of different masses, and the other is based on galaxy systems properly selected to represent dark halos.


2019 ◽  
Vol 488 (2) ◽  
pp. 1864-1877 ◽  
Author(s):  
Tommaso Zana ◽  
Pedro R Capelo ◽  
Massimo Dotti ◽  
Lucio Mayer ◽  
Alessandro Lupi ◽  
...  

Abstract Bars are a key factor in the long-term evolution of spiral galaxies, in their unique role in redistributing angular momentum and transporting gas and stars on large scales. The Eris-suite simulations are cosmological zoom-in, N-body, smoothed-particle hydrodynamic simulations built to follow the formation and evolution of a Milky-Way-sized galaxy across the build-up of the large-scale structure. Here we analyse and describe the outcome of two particular simulations taken from the Eris suite – ErisBH and Eris2k – which mainly differ in the prescriptions employed for gas cooling, star formation, and feedback from supernovae and black holes. Our study shows that the enhanced effective feedback in Eris2k, due to the collective effect of the different micro-physics implementations, results in a galaxy that is less massive than its ErisBH counterpart till z ∼ 1. However, when the stellar content is large enough so that global dynamical instabilities can be triggered, the galaxy in Eris2k develops a stronger and more extended bar with respect to ErisBH. We demonstrate that the structural properties and time evolution of the two bars are very different. Our results highlight the importance of accurate sub-grid prescriptions in cosmological zoom-in simulations of the process of galaxy formation and evolution, and the possible use of a statistical sample of barred galaxies to assess the strength of the stellar feedback.


2019 ◽  
Vol 15 (S359) ◽  
pp. 166-167
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

AbstractA proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ˜ 2 in ˜1.5deg2 of the COSMOS field. Using pairs of massive galaxies (log (M*/Mʘ) ≥ 11) as tracers of cores, we find 75 candidate cores. A clustering analysis and the extended Press-Schechter model show that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function and the quiescent fraction for member galaxies of the 75 candidate cores. We find that stellar mass assembly and quenching are accelerated as early as z ˜ 2 in proto-cluster cores.


2009 ◽  
Vol 5 (S262) ◽  
pp. 323-324
Author(s):  
Adriana de Lorenzo-Cáceres ◽  
Alexandre Vazdekis ◽  
Jesús Falcón-Barroso ◽  
Inma Martínez-Valpuesta

Double bars might be the key mechanisms to transport gas to the very central regions of galaxies, so double-barred galaxies are key objects to better understand the galaxy formation and evolution scenarios. In order to disentangle the role of double bars in the galaxy build up, we are performing a whole kinematical and stellar population analysis of these objects from high S/N spectroscopic data.


2019 ◽  
Vol 15 (S359) ◽  
pp. 257-259
Author(s):  
Marco Canossa-Gosteinski ◽  
Ana L. Chies-Santos ◽  
Cristina Furlanetto ◽  
Rodrigo F. Freitas ◽  
William Schoenell

AbstractUltra-diffuse galaxies (UDGs) are extremely low luminosity galaxies and some of them seem to have a lack of dark matter. Therefore, they can offer important clues to better understand galaxy formation and evolution. Little is known about UDGs in less dense environments, as most of the known UDGs have been found in very dense regions, in the outskirts of massive galaxies in galaxy clusters. In this work, we present the properties of UDGs candidates identified through visual inspection around the low-density environment of NGC 3115, the closest S0 galaxy from the Milky Way. We have measured the structural parameters of 41 UDGs candidates using images obtained with the Dark Energy Camera at the Blanco Telescope. Such structural parameters will be used to characterise and select the best UDG candidates, that will have their properties traced for future follow-up campaigns.


2020 ◽  
pp. 2130001
Author(s):  
Quynh Lan Nguyen ◽  
Grant J. Mathews ◽  
Lara Arielle Phillips ◽  
Miguel A. Correa ◽  
In-Saeng Suh ◽  
...  

The core–cusp problem remains a challenging discrepancy between observations and simulations in the standard [Formula: see text]CDM model for the formation of galaxies. The problem is that [Formula: see text]CDM simulations predict a steep power-law mass density profile at the center of galactic dark matter halos. However, observations of dwarf galaxies in the Local Group reveal a density profile consistent with a nearly flat distribution of dark matter near the center. A number of solutions to this dilemma have been proposed. Here, we summarize investigations into the possibility that the dark matter particles themselves self interact and scatter. Such self-interacting dark matter (SIDM) particles can smooth out the dark-matter profile in high-density regions. We also review the theoretical proposal that self-interacting dark matter may arise as an additional Higgs scalar in the 3–3–1 extension of the Standard Model (SM). We present new simulations of galaxy formation and evolution for this formulation of self-interacting dark matter. Current constraints on this self-interacting dark matter are then summarized.


Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.


2006 ◽  
Vol 2 (S235) ◽  
pp. 139-139
Author(s):  
L. Sodré ◽  
A. Mateus ◽  
R. Cid Fernandes ◽  
G. Stasińska ◽  
W. Schoenell ◽  
...  

AbstractWe revisit the bimodality of the galaxy population seen in the local universe. We address this issue in terms of physical properties of galaxies, such as mean stellar ages and stellar masses, derived from the application of a spectral synthesis method to galaxy spectra from the SDSS. We show that the mean light-weighted stellar age of galaxies presents the best description of the bimodality seen in the galaxy population. The stellar mass has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results give support to the existence of a ‘downsizing’ in galaxy formation, where nowadays massive galaxies tend to have stellar populations older than those found in less massive objects.


Author(s):  
Rhys J. J. Poulton ◽  
Aaron S. G. Robotham ◽  
Chris Power ◽  
Pascal J. Elahi

AbstractMerger trees harvested from cosmologicalN-body simulations encode the assembly histories of dark matter halos over cosmic time and are a fundamental component of semi-analytical models of galaxy formation. The ability to compare the tools used to construct merger trees, namely halo finders and tree building algorithms, in an unbiased and systematic manner is critical to assess the quality of merger trees. In this paper, we present the dendrogram, a novel method to visualise merger trees, which provides a comprehensive characterisation of a halo’s assembly history—tracking subhalo orbits, halo merger events, and the general evolution of halo properties. We show the usefulness of thedendrogramas a diagnostic tool of merger trees by comparing halo assembly simulation analysed with three different halo finders—VELOCIraptor, AHF, and Rockstar—and their associated tree builders. Based on our analysis of the resulting dendrograms, we highlight how they have been used to motivate improvements to VELOCIraptor. Thedendrogramsoftware is publicly available online, at:https://github.com/rhyspoulton/MergerTree-Dendrograms.


Sign in / Sign up

Export Citation Format

Share Document