scholarly journals Synthesis of composite thin-film polymer consisting of tungsten and zinc oxide as hydrogen gas detector

2019 ◽  
Vol 90 ◽  
pp. 01008
Author(s):  
Willis Alister G. ◽  
Saharudin Haron

A composite polymer consisting of polyaniline (PANI) was synthesised via oxidative polymerisation by varying concentrations of transitional metal oxides and the presence of a hydrogen dissociation catalyst, palladium (Pd). The metal oxides chosen for this study were tungsten oxide (WO3) and zinc oxide (ZnO). The composite polymer samples were characterised using Fourier transform infrared (FTIR) spectroscopy where ultraviolet-visible (UV-Vis) spectroscopy was used to observe the optical changes of the thin films due to exposure to hydrogen. The FTIR spectra obtained confirmed the synthesis of PANI composite. Based on the UV-VIS analysis, PANI-ZnO composite polymer showed the highest difference in peak intensity before and after exposure to hydrogen with 11.4% difference.

2017 ◽  
Vol 13 (4) ◽  
pp. 559-562 ◽  
Author(s):  
Alister Genndi Willis ◽  
Saharudin Haron

Composite polymer consisting polyaniline (PANI) and zinc oxide (ZnO) were synthesized via oxidative polymerization of aniline. The composite PANI thin films were characterized by FTIR spectroscopy and their optical properties towards hydrogen gas were investigated using UV-vis spectroscopy. The FTIR spectra obtained verified the synthesis PANI/ZnO composite. From the experimental results, it was found that with increasing zinc oxide content in the composite cause the transmittance to decrease. The transmittance of the thin films slightly increased after exposed to hydrogen gas. PANI-ZnO (10%w.t.) exhibited best response compared to other composition with the highest transmittance peak difference of 11.4%. 


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
E. Y. Shaba ◽  
J. O. Jacob ◽  
J. O. Tijani ◽  
M. A. T. Suleiman

AbstractIn this era, nanotechnology is gaining enormous popularity due to its ability to reduce metals, metalloids and metal oxides into their nanosize, which essentially alter their physical, chemical, and optical properties. Zinc oxide nanoparticle is one of the most important semiconductor metal oxides with diverse applications in the field of material science. However, several factors, such as pH of the reaction mixture, calcination temperature, reaction time, stirring speed, nature of capping agents, and concentration of metal precursors, greatly affect the properties of the zinc oxide nanoparticles and their applications. This review focuses on the influence of the synthesis parameters on the morphology, mineralogical phase, textural properties, microstructures, and size of the zinc oxide nanoparticles. In addition, the review also examined the application of zinc oxides as nanoadsorbent for the removal of heavy metals from wastewater.


2015 ◽  
Vol 1107 ◽  
pp. 326-332
Author(s):  
Abdul Rahim Yacob ◽  
Kamaluddeen Suleiman Kabo

The use of metal oxides in heterogeneous base catalysis has gained a large interest due to their application in many chemical and industrial processes and is environmental friendly. Basic metal oxides are commonly used and their structures, morphology and performance can be modified by method of preparation and thermal activation. In this study, surface modified amphoteric zinc oxide was prepared via hydration-dehydration method and characterised by TGA and FTIR. The basic strength at various temperatures is characterised by FTIR and back titration analyses. The results shows that surface modified zinc oxide has the highest basic strength of 1.453mmolg-1at 400°C making it a relatively good and suitable compound for use in heterogeneous basic catalysis. This result is also supported by FTIR spectra which show possible relationship between the Lewis O2-and increasing basic strength.


2020 ◽  
Vol 9 (5) ◽  
pp. 10624-10634
Author(s):  
Siti Nor Aliffah Mustaffa ◽  
Nurul Assikin Ariffin ◽  
Ahmed Lateef Khalaf ◽  
Mohd. Hanif Yaacob ◽  
Nizam Tamchek ◽  
...  

2011 ◽  
Vol 254 ◽  
pp. 167-170 ◽  
Author(s):  
Subodh Srivastava ◽  
Sumit Kumar ◽  
Vipin Kumar Jain ◽  
Y.K. Vijay

In the present work we have reported the effect of temperature on the gas sensing properties of pure Polyaniline (PANI) and Multiwall carbon nanotube (MWNT) doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and MWNT doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline using ammonium persulfate in an acidic medium. The thin sensing film of chemically synthesized PANI and MWNT doped PANI composite were deposited onto finger type Cu-interdigited electrodes using spin cast technique to prepared chemiresistor type gas sensor. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature, MWNT doped PANI composite sensor shows higher response value and sensitivity with good repeatability in comparison to pure PANI thin film sensor. It was also observed that both PANI and MWNT doped PANI composite thin film based sensors showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Trung Kien Pham ◽  
Tran Ngo Quan

In this paper, we report on synthesizing xonotlite, calcium silicate hydrate (CSH), via a hydrothermal reaction using rice husk from the Mekong Delta, Vietnam. The rice husks were burnt at 1000 °C for 3 h. Grey rice husk ash was collected, then mixed with Ca(OH)2 at a Ca/Si molar ratio of 1 : 1. This was followed by a hydrothermal reaction at 180 °C for 24 h and 48 h to obtain the xonotlite mineral. Before and after adsorption, 3-mm xonotlite pellets were thoroughly characterized using X-ray diffractometry (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and ultraviolet-visible (UV-VIS) spectroscopy. This material has potential application in chromium(III) removal during a chrome-plating process. The adsorption efficiency of the 3-mm pellet samples reached more than 76 % after 12 h.


2011 ◽  
Vol 694 ◽  
pp. 170-174
Author(s):  
Qiang Xia ◽  
Jia Ying Wu

The enhancement of stability of light sensitive CoQ10 was achieved by preparation of coenzyme Q10-loaded Nanostructured Lipid Carriers through High Pressure Homogenization (HPH). Well-dissolved lipids of CoQ10 were selected, optimized ratio of emusifiers and lipids were determined for the formulation. Obtained by photon correlation spectroscopy (PCS), the mean particle size of CoQ10-NLC was 112 ± 7 nm within 60 days after preparation. In terms of centrifugal stability, results of laser diffraction (LD) analysis eliminated the existence of aggregated particles with micrometers and showed almost no size growth before and after centrifugation. Zeta potential values were from -50 to -55 mV with pH in the range of 6.56–6.72. The concentration of CoQ10-NLC measured by UV-Vis spectroscopy was as high as 8.13 mg/mL.


Talanta ◽  
2018 ◽  
Vol 188 ◽  
pp. 356-364 ◽  
Author(s):  
Young Kwang Kim ◽  
Sung-Ho Hwang ◽  
Soon Moon Jeong ◽  
Ka Young Son ◽  
Sang Kyoo Lim

2021 ◽  
Vol 6 (1) ◽  
pp. 44-51
Author(s):  
Manikandan Dhayalan ◽  
Malathi Selvaraj ◽  
Kumar B Karthick ◽  
Riyaz S.U. Mohammed ◽  
Mika Sillanpää

Abstract An attempt was made to synthesize zinc oxide gum white nanoparticles (ZnO-GWNPs) by the greenway approach using Aegle marmelos (Bael fruit) juice extract as a capping and reducing agent. Synthesis of ZnO-GWNPs by greener approach is safer, more economical, more energy-efficient, eco-friendlier, and less toxic than chemically synthesized counterparts. The optical properties of the ZnO-GWNPs were ascertained through UV-Vis spectroscopy, Fourier Transform-Infrared (FT-IR), X-ray diffraction (XRD), High-resolution transmittance electron microscopy (HRTEM). A characteristic absorption peak at 385nm confirmed the presence of ZnO-GWNP using UV-Vis spectroscopy. FTIR spectrum revealed that the characteristic absorption peak of the Zn-O bond was observed at 467 cm-1. The XRD result for the ZnO showed the tendency of the three most intense diffraction peaks. The average crystallite size ZnO NPs at scattering angle (2θ) 22.89 and 32.15 was 39.14 and 26.08 nm and it showed the presence of miller indices of (100), (002), (101), (102) respectively. The EDX spectrum gave strong signals for zinc and oxygen indicating the occurrence of the nanoparticles in their oxide form rather than the pure zinc form. The SEM image showed the surface morphology of ZnO-GW NPs and the HR-TEM image showed the crystalline nature of ZnO-GW NPs. Cytotoxicity study of ZnO-GW NPs was determined against MCF-7 cell lines and the IC50 values were found to be 40 µg/mL and 60 µg/mL at 24 h and 48 h respectively.


Sign in / Sign up

Export Citation Format

Share Document