scholarly journals Monomorphic allele rs109231213 in 3’UTR PLAG1 gene in purebred of Bali cattle (Bos javanicus)

2022 ◽  
Vol 335 ◽  
pp. 00010
Author(s):  
Sutikno Sutikno ◽  
Jean Pierre Munyaneza ◽  
Santiananda Arta Asmarasari ◽  
Jakaria Jakaria

The mutation rs109231213 that is located in 3’UTR of PLAG1 gene is associated with the growth and body weight in several Bos taurus and Bos indicus breeds. This study aimed to identify SNP rs109231213 in Bali cattle (Bos javanicus). The study used 41 samples of Bali cattle. The PLAG1 gene polymorphism was analyzed using PCR and direct sequencing methods. PCR pimers were 5’- TTGCACAGAATCAGTGTGTC-3’ and 5’- AGCCTAACGTGGATCTATGG-3’. The results showed that primers successfully amplified the 331 bp fragment at annealing 60°C that contained rs109231213. SNP was monomorphic in Bali cattle with one allele (G). This study concludes that rs109231213 in 3’UTR of PLAG1 gene can be used as specific marker in purebred of Bali cattle that have never been crossed with Bos taurus and Bos indicus.

2019 ◽  
Vol 26 (1) ◽  
pp. 44
Author(s):  
Endang Tri Margawati ◽  
Slamet Diah Volkandari ◽  
Indriawati Indriawati ◽  
Emma M. Svensson

Calpastatin is one of gene markers affecting meat tenderness. The study aimed to evaluate genetic variation of calpastatin (CAST) gene of Bali cattle (Bos javanicus) in lndonesia. A total of 61 samples consisting of 21 Bali cattle, 22 Ongole cattle (Bos indicus), and 18 Friesian Holstein (FH) cattle (Bos taurus) were applied. The Ongole and FH cattle were involved for breed comparison. DNA was extracted from fresh blood using a High Salt method and measured their quality by a Spectrophotometer. A 523 bp of Calpastatin gene fragment was amplified by Polymerase Chain Reaction and Restriction Fragment Polymorphism (PCR-RFLP) technique with RsaI restriction enzyme for genotyping. Result showed that two variants alleles (C and G) and three genotypes (CC, GC, GG) were found in those Bali, Ongole and FH samples. Allele G was dominant allele with the highest G allele was in Bali cattle population (0.88). The higher percentage of allele C was found in Ongole and Friesian Holstein compared to that in Bali cattle. The Ongole breed tends to have a potential source of lean meat quality. This finding identified that genetic variation of CAST gene was exist in Bali cattle and adapted cattle of Ongole and FH in Indonesian.


2022 ◽  
Vol 335 ◽  
pp. 00014
Author(s):  
R. Misrianti ◽  
S.H. Wijaya ◽  
C. Sumantri ◽  
J. Jakaria

Mitochondria DNA (mtDNA) as a source of genetic information based on the maternal genome, can provide important information for phylogenetic analysis and evolutionary biology. The objective of this study was to analyze the phylogenetic tree of Bali cattle with seven gene bank references (Bos indicus, Bos taurus, Bos frontalis, and Bos grunniens) based on partial sequence 16S rRNA mitochondria DNA. The Bayesian phylogenetic tree was constructed using BEAST 2.4. and visualization in Figtree 1.4.4 (tree.bio.ed.ac.uk/software/figtree/). The best model of evolution was carried out using jModelTest 2.1.7. The most optimal was the evolutionary models GTR + I + G with p-inv (I) 0,1990 and gamma shape 0.1960. The main result indicated that the Bali cattle were grouped into Bos javanicus. Phylogenetic analysis also successfully classifying Bos javanicus, Bos indicus, Bos taurus, Bos frontalis and Bos grunniens. These results will complete information about Bali cattle and useful for the preservation and conservation strategies of Indonesian animal genetic resources.


2020 ◽  
Vol 25 (2) ◽  
pp. 39
Author(s):  
Peni Wahyu Prihandini ◽  
A Primasari ◽  
M Luthfi ◽  
J Efendy ◽  
D Pamungkas

Information on the genetic diversity of native and local cattle in Indonesia is vital for the development of breeding and conservation strategies. This study was aimed to assess the genetic diversity and phylogenetic relationship of the Indonesian native (Bali) and local [(Donggala, Madura, Sragen, Galekan, Rambon, dan Peranakan Ongole Grade x Bali (POBA)] cattle populations. Genomic DNA was extracted from blood samples (n= 75). Partial sequences of mtDNA cyt<em> b</em>, 464 bp, were amplified using the polymerase chain reaction technique (forward primer: L14735 and reverse primer: H15149). Thirty-four reference sequences of <em>Bos taurus</em>, <em>Bos indicus</em>, and <em>Bos javanicus</em> were included in the phylogenetic analyses. A total of 55 polymorphic sites and 13 haplotypes were observed in the whole breeds. No variable sites of mtDNA cyt<em> b</em> were observed in Galekan (kept in BCRS) and Rambon cattle. Overall haplotype diversity and nucleotide diversity were 0.515 ± 0.070 and 0.0184 ± 0.0045, respectively. The highest (0.092) and the lowest (0.000) genetic distances were between Bali and Donggala cattle populations and among Galekan (kept in BCRS), Rambon, and POBA cattle populations, respectively. Both mtDNA network and phylogenetic analyses revealed two major maternal lineages (A and B) of the studied population. Most of the sampled individuals (69.33%, present in haplotype H8-H19) were linked to lineage B, which belonged to the same cluster with <em>Bos javanicus</em>. Overall, most of the Indonesian native and local cattle populations had a considerable genetic diversity and shared a common maternal origin with <em>Bos javanicus</em>.


2019 ◽  
Vol 44 (4) ◽  
pp. 335
Author(s):  
J. Jakaria ◽  
T. Musyaddad ◽  
S. Rahayu ◽  
M. Muladno ◽  
C. Sumantri

This study aimed to investigate the diversity of the complete sequence of D-loop mitochondrial DNA (mtDNA) in Bali and Sumba Ongole (SO) cattlebreeds. A total of 24 blood samples were collected from Bali cattle (19 heads) and SO cattle (5 heads), and were extracted and then analyzed to obtain the sequence of D-loop mt DNA.Multiple alignments of the whole sequence of D-loop mtDNA were determined using clustal W. Genetic distance was calculated using a p-distance method, while the genetic tree was constructed using neighbor-joining (NJ) based on MEGA 6. Haplotype number, haplotype diversity (Hd) and nucleotide diversity (Pi) were analyzed using DnaSP version 6. As a result, the sequence of D-loop mtDNA in Bali cattle (921-1119 bp) and SO cattle (913 bp) was reported to have 8 and 4 haplotypes. Hd and Pi of Bali cattle reached 0.625±0.139 and 0.0266±0.0145, respectively, which wwere different from that of SO cattle, namely 0.900±0.1610 and 0.0064±0.0015, respectively. Specifically, we found 22 bp-repetitive nucleotide in Bali cattle, existing 3-9 times with a length of 66-198 bp present in D-loop mtDNA. This unique feature did not exist in SO cattle. Genetic distance and genetic tree determined according to sequence in hypervariability (HV-1) region of D-loop mtDNA (166 bp) resulted in satisfied separation, successfully classifying Bos javanicus, Bos indicus, and Bos taurus cluster.


Author(s):  
P. , , Divya ◽  
K. P. Ramesha ◽  
Ragini Kumari ◽  
Arun Pratap Singh ◽  
D. N. Das ◽  
...  

Selection of high fertile bulls with the help of marker assisted selection has gained importance in recent years. The low heritability of fertility traits hampers improvement of these traits by conventional selection based on phenotypic records. No information is available on the role of SNPs in KiSS1 gene in cattle on semen quality parameters in bovines. KiSS1 genes code for Kisspeptin, which are essential upstream regulators of neurons secreting gonadotropin-releasing hormone and play crucial role in reproduction.The coding regions along with exon-intron boundaries of KiSS1 gene, was characterized using PCR-SSCP method and direct sequencing. Two genotypes were observed which were represented as SSCP pattern 1 and pattern 2 and found to carry one SNPs (T153C) and one insertion of G at 291_292bp. The bulls with pattern 2 were heterozygous with respect to the transition T153C and pattern1 bulls were homozygous with TT genotype. The transition was predicted to cause amino acid change from Valine to Alanine. The frequency of bulls with pattern1 and pattern 2 were 0.67 and 0.33 in 67 Holstein Friesian bulls and 0.73 and 0.27 in 13 Khillari bulls. The association study of genotypes with semen quality parameters revealed significant association of genotypes with acrosome integrity in fresh semen (P less than 0.05) and no association with sperm concentration, volume per ejaculate, percent live sperm and Hypo Osmotic Swelling Test (HOST) with higher acrosome integrity in bulls with pattern2. Upon validation of the results in larger population and identifying the exact role of the novel SNP T153C and insertion of G at 291_292bp, they could be incorporated in selection programme for improving fertility in bulls.as markers for acrosome integrity in cattle.


2005 ◽  
Vol 93 (6) ◽  
pp. 821-828 ◽  
Author(s):  
Álvaro Ojeda ◽  
Ornella de Parra ◽  
Joaquím Balcells ◽  
Álvaro Belenguer

Four experiments were performed to study the kinetics of purine metabolism and urinary excretion in Zebu crossbred cattle. Fasting excretion was established in Expt 1, using eighteen maleBos indicus×Bos tauruscrossbred cattle (261 (se 9·1) kg body weight), six of each of the following genotypes: 5/8Bos indicus, 1/2Bos indicusand 3/8Bos indicus. No significant differences were observed among genotypes in fasting purine derivative excretion (277·3 (se 35·43) μmol/metabolic body weight). In a second experiment we measured the xanthine oxidase activity, which was higher in liver than in duodenal mucosa (0·64 and 0·06 (se 0·12) units/g wet tissue per min respectively;P>0·05) being in plasma 0·60 (se 0·36) units/l per min. The kinetics of uric acid were measured by intravenous pulse dose of [1,3-15N]uric acid (Expt 3). The cumulative recovery of the isotope in urine was 82 (se 6·69) %, and uric acid plasma removal, pool size and mean retention time were 0·284 (se 0·051) per h, 5·45 (se 0·823) mmol and 3·52 (se 0·521) h, respectively. Allantoin was removed from plasma at an estimated fractional rate of 0·273 (se 0·081) per h and mean retention was 3·66 (se 1·08) h. In Expt 4, the relationship between urinary purine derivative excretion (Y; mmol/d) and digestible organic matter intake (X, kg/d) was defined by the equation:Y=7·69 (se 4·2)+5·69 (se 1·68)X;n16, Se 1·31,r0·67.


2008 ◽  
Vol 43 (5) ◽  
pp. 657-659 ◽  
Author(s):  
Rogério Abdallah Curi ◽  
Luis Artur Loyola Chardulo ◽  
Antônio Carlos Silveira ◽  
Henrique Nunes de Oliveira

The objective of this work was to genotype the single nucleotide polymorphism (SNP) A2959G (AF159246) of bovine CAST gene by PCR-RFLP technique, and to report its use for the first time. For this, 147 Bos indicus and Bos taurus x Bos indicus animals were genotyped. The accuracy of the method was confirmed through the direct sequencing of PCR products of nine individuals. The lowest frequency of the meat tenderness favorable allele (A) in Bos indicus was confirmed. The use of PCR-RFLP for the genotyping of the bovine CAST gene SNP was shown to be robust and inexpensive, which will greatly facilitate its analysis by laboratories with basic structure.


2021 ◽  
Vol 45 (1) ◽  
pp. 14
Author(s):  
Nirmala Fitria Firdhausi ◽  
Achmad Farajallah ◽  
Dyah Perwitasari

Madura Cattle is one breed of local cattle from Indonesia. Madura cattle are estimated to originate from a crossbreeding between Bos indicus and Bos javanicus. Another presumption is that Madura cattle are the result of a crossbreeding between B. indicus males and mixed B. javanicus or Bos taurus. Tracing the history of Madura cross and another cattle phylogenetic based on maternal lineage can be done by analyzing the variation of the mitochondrial genome (mtDNA). The purpose of this study was to determine the clarity of the origin of Madura cattle based on maternal lineage using mtDNA markers Cyt b and D-loop. This research is expected to provide genetic information and the origin of Madura cattle, so that it can be used to help improve the breeding and conservation program for Madura cattle. The results of the phylogeny tree reconstruction, using the Cyt b and D-loop genes showed that Madura cattle originated from Sampang region (Polagan, Golbung, and Komis) were grouped into two types of maternal origin. Madura cattle clade I are grouped with B. indicus and B. taurus, while Madura cattle clade II are grouped with B. javanicus. A crossbreeding between B. javanicus and B. indicus is estimated to have been carried out since the entry of Hindu culture brought by the India peoples to Indonesia around 1800 years ago. The crossing between B. javanicus and B. indicus was then more intensively carried out at the time of the government's promoting the development of Ongol cattles (B. indicus) in the days of the Dutch East Indies. The length segment of Cyt b that can be amplified is 230 bp and the D-loop segment of varying length, 577 bp for the Madura 41 and 29 samples, and 624 bp for sample 32.  


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Ocilon Gomes de Sá Filho ◽  
José Luiz Moraes Vasconcelos

Bos indicuscattle, the preferred genetic group in tropical climates, are characterized by having a lower reproductive efficiency thanBos taurus. The reasons for the poorer reproductive efficiency of theBos indicuscows include longer lengths of gestation and postpartum anestrus, a short length of estrous behavior with a high incidence of estrus occurring during the dark hours, and puberty at older age and at a higher percentage of body weight relative to mature body weight. Moreover, geography, environment, economics, and social traditions are factors contributing for a lower use of reproductive biotechnologies in tropical environments. Hormonal protocols have been developed to resolve some of the reproductive challenges of theBos indicuscattle and allow artificial insemination, which is the main strategy to hasten genetic improvement in commercial beef ranches. Most of these treatments use exogenous sources of progesterone associated with strategies to improve the final maturation of the dominant follicle, such as temporary weaning and exogenous gonadotropins. These treatments have caused large impacts on reproductive performance of beef cattle reared under tropical areas.


Sign in / Sign up

Export Citation Format

Share Document