scholarly journals Recent results from BABAR

2020 ◽  
Vol 235 ◽  
pp. 04001
Author(s):  
J. William Gary

The BABAR Collaboration at SLAC continues to produce a wide variety of publications on interesting and unique topics despite having ceased data-collection operations more than 10 years ago. Presented here are the results of three recent studies. The first is on the direct measurement of the B± → K± X(3872) branching fraction, allowing the first determination of the branching fractions of the exotic X(3872) charmonium state. The second is a publication on the first observation of the D0 → K−π+e+e− branching fraction. The third is on searches for lepton flavor and lepton number violating decays in D0 meson decays, resulting in improvements over existing limits by factors that vary from 20 to almost 800 depending on the D0 decay channel.

2005 ◽  
Vol 608 (1-2) ◽  
pp. 24-30 ◽  
Author(s):  
M. Ablikim ◽  
J.Z. Bai ◽  
Y. Ban ◽  
J.G. Bian ◽  
X. Cai ◽  
...  

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Jiao Zhang ◽  
Xiuyun An ◽  
Ruirui Sun ◽  
Jianfeng Su

Abstract Recently, several observed anomalies in semileptonic B meson decays have implied hints of lepton flavor universal violation. Motivated by these inspiring results, we study the baryon decays $$\Xi _{b}\rightarrow \Lambda (\Xi _{c})\tau ^{-}\bar{\nu }_{\tau }$$Ξb→Λ(Ξc)τ-ν¯τ which are mediated by $$b\rightarrow u(c)\tau ^{-}\bar{\nu }_{\tau }$$b→u(c)τ-ν¯τ transitions at quark level in the Standard Model and different New Physics scenarios. In the framework of the extended Standard Model on assuming a general effective theory, we constrain the Wilson coefficients of the NP operators using the experimental measurement results for the $$Br(B_{c}^+\rightarrow \tau ^+ \nu _{\tau })$$Br(Bc+→τ+ντ), $$R^{l}_{\pi }$$Rπl, $$R_{D^{(*)}}$$RD(∗), $$R_{J/\psi }$$RJ/ψ and $$F_{L}^{D^{*}}$$FLD∗ anomalies and investigate their New Physics effects on several observables relative to the $$\Xi _{b}\rightarrow \Lambda (\Xi _{c})\tau ^{-}\bar{\nu }_{\tau }$$Ξb→Λ(Ξc)τ-ν¯τ decays. We mention the differential branching fraction $${\text {d}}Br/{\text {d}}q^2$$dBr/dq2, the ratio of branching fractions $$R(q^2)$$R(q2), the lepton-side forward–backward asymmetry $$A_{FB}(q^2)$$AFB(q2), the longitudinal polarization $$P_{L}^{\Lambda (\Xi _{c})}(q^2)$$PLΛ(Ξc)(q2) of the daughter baryons $$\Lambda (\Xi _{c})$$Λ(Ξc) and $$P_{L}^{\tau }(q^2)$$PLτ(q2) of the $$\tau $$τ lepton, and the convexity parameter $$C_{F}(q^2)$$CF(q2).


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
◽  
R. Aaij ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

Abstract The first full angular analysis of the $$ {B}^0\to {D}^{\ast -}{D}_s^{\ast +} $$ B 0 → D ∗ − D s ∗ + decay is performed using 6 fb−1 of pp collision data collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The $$ {D}_s^{\ast +}\to {D}_s^{+}\gamma $$ D s ∗ + → D s + γ and D*− → $$ {\overline{D}}^0{\pi}^{-} $$ D ¯ 0 π − vector meson decays are used with the subsequent $$ {D}_s^{+} $$ D s + → K+K−π+ and $$ {\overline{D}}^0 $$ D ¯ 0 → K+π− decays. All helicity amplitudes and phases are measured, and the longitudinal polarisation fraction is determined to be fL = 0.578 ± 0.010 ± 0.011 with world-best precision, where the first uncertainty is statistical and the second is systematic. The pattern of helicity amplitude magnitudes is found to align with expectations from quark-helicity conservation in B decays. The ratio of branching fractions [ℬ($$ {B}^0\to {D}^{\ast -}{D}_s^{\ast +} $$ B 0 → D ∗ − D s ∗ + ) × ℬ($$ {D}_s^{\ast +}\to {D}_s^{+}\gamma $$ D s ∗ + → D s + γ )]/ℬ(B0 → D*−$$ {D}_s^{+} $$ D s + ) is measured to be 2.045 ± 0.022 ± 0.071 with world-best precision. In addition, the first observation of the Cabibbo-suppressed Bs → D*−$$ {D}_s^{+} $$ D s + decay is made with a significance of seven standard deviations. The branching fraction ratio ℬ(Bs → D*−$$ {D}_s^{+} $$ D s + )/ℬ(B0 → D*−$$ {D}_s^{+} $$ D s + ) is measured to be 0.049 ± 0.006 ± 0.003 ± 0.002, where the third uncertainty is due to limited knowledge of the ratio of fragmentation fractions.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
R. Aaij ◽  
◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

Abstract A measurement of four branching-fraction ratios for three-body decays of B mesons involving two open-charm hadrons in the final state is presented. Run 1 and Run 2 pp collision data are used, recorded by the LHCb experiment at centre-of-mass energies 7, 8, and 13 TeV and corresponding to an integrated luminosity of 9 fb−1. The measured branching-fraction ratios are$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({B}^{+}\to {D}^{\ast +}{D}^{-}{K}^{+}\right)}{\mathcal{B}\left({B}^{+}\to {\overline{D}}^0{D}^0{K}^{+}\right)}=0.517\pm 0.015\pm 0.013\pm 0.011,\\ {}\frac{\mathcal{B}\left({B}^{+}\to {D}^{\ast -}{D}^{+}{K}^{+}\right)}{\mathcal{B}\left({B}^{+}\to {\overline{D}}^0{D}^0{K}^{+}\right)}=0.577\pm 0.016\pm 0.013\pm 0.013,\\ {}\begin{array}{c}\frac{\mathcal{B}\left({B}^0\to {D}^{\ast -}{D}^0{K}^{+}\right)}{\mathcal{B}\left({B}^0\to {D}^{-}{D}^0{K}^{+}\right)}=1.754\pm 0.028\pm 0.016\pm 0.035,\\ {}\frac{\mathcal{B}\left({B}^{+}\to {D}^{\ast +}{D}^{-}{K}^{+}\right)}{\mathcal{B}\left({B}^{+}\to {D}^{\ast -}{D}^{+}{K}^{+}\right)}=0.907\pm 0.033\pm 0.014,\end{array}\end{array}} $$ B B + → D ∗ + D − K + B B + → D ¯ 0 D 0 K + = 0.517 ± 0.015 ± 0.013 ± 0.011 , B B + → D ∗ − D + K + B B + → D ¯ 0 D 0 K + = 0.577 ± 0.016 ± 0.013 ± 0.013 , B B 0 → D ∗ − D 0 K + B B 0 → D − D 0 K + = 1.754 ± 0.028 ± 0.016 ± 0.035 , B B + → D ∗ + D − K + B B + → D ∗ − D + K + = 0.907 ± 0.033 ± 0.014 , where the first of the uncertainties is statistical, the second systematic, and the third is due to the uncertainties on the D-meson branching fractions. These are the most accurate measurements of these ratios to date.


Author(s):  
Alberto Lusiani

We report the status of the Heavy Flavour Averaging Group (HFLAV) averages of the \tauτ lepton measurements We then update the latest published HFLAV global fit of the \tauτ lepton branching fractions (Spring 2017) with recent results by . We use the fit results to update the Cabibbo-Kobayashi-Maskawa (CKM) matrix element \left|V_{us}\right||Vus| measurements with the \tauτ branching fractions. We combine the direct \tauτ branching fraction measurements with indirect predictions using kaon branching fractions measurements to improve the determination of \left|V_{us}\right||Vus| using \tauτ branching fractions. The \left|V_{us}\right||Vus| determinations based on the inclusive branching fraction of \tauτ to strange final states are about 3\sigma3σ lower than the \left|V_{us}\right||Vus| determination from the CKM matrix unitarity.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
M. Ablikim ◽  
◽  
M. N. Achasov ◽  
P. Adlarson ◽  
S. Ahmed ◽  
...  

Abstract We measure the branching fractions for seven $$ {D}_s^{+} $$ D s + two-body decays to pseudo-scalar mesons, by analyzing data collected at $$ \sqrt{s} $$ s = 4.178 ∼ 4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({D}_s^{+}\to {K}^{+}\eta \hbox{'}\right)=\left(2.68\pm 0.17\pm 0.17\pm 0.08\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to \eta \hbox{'}{\pi}^{+}\right)=\left(37.8\pm 0.4\pm 2.1\pm 1.2\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}^{+}\eta \right)=\left(1.62\pm 0.10\pm 0.03\pm 0.05\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to \eta {\pi}^{+}\right)=\left(17.41\pm 0.18\pm 0.27\pm 0.54\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}^{+}{K}_S^0\right)=\left(15.02\pm 0.10\pm 0.27\pm 0.47\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}_S^0{\pi}^{+}\right)=\left(1.109\pm 0.034\pm 0.023\pm 0.035\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}^{+}{\pi}^0\right)=\left(0.748\pm 0.049\pm 0.018\pm 0.035\right)\times {10}^{-3},\end{array}} $$ B D s + → K + η ' = 2.68 ± 0.17 ± 0.17 ± 0.08 × 10 − 3 , B D s + → η ' π + = 37.8 ± 0.4 ± 2.1 ± 1.2 × 10 − 3 , B D s + → K + η = 1.62 ± 0.10 ± 0.03 ± 0.05 × 10 − 3 , B D s + → η π + = 17.41 ± 0.18 ± 0.27 ± 0.54 × 10 − 3 , B D s + → K + K S 0 = 15.02 ± 0.10 ± 0.27 ± 0.47 × 10 − 3 , B D s + → K S 0 π + = 1.109 ± 0.034 ± 0.023 ± 0.035 × 10 − 3 , B D s + → K + π 0 = 0.748 ± 0.049 ± 0.018 ± 0.035 × 10 − 3 , where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode $$ {D}_s^{+} $$ D s + → K+K−π+. Precision of our measurements is significantly improved compared with that of the current world average values.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
S. Choudhury ◽  
◽  
S. Sandilya ◽  
K. Trabelsi ◽  
A. Giri ◽  
...  

Abstract We present measurements of the branching fractions for the decays B → Kμ+μ− and B → Ke+e−, and their ratio (RK), using a data sample of 711 fb−1 that contains 772 × 106$$ B\overline{B} $$ B B ¯ events. The data were collected at the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e− collider. The ratio RK is measured in five bins of dilepton invariant-mass-squared (q2): q2 ∈ (0.1, 4.0), (4.00, 8.12), (1.0, 6.0), (10.2, 12.8) and (> 14.18) GeV2/c4, along with the whole q2 region. The RK value for q2 ∈ (1.0, 6.0) GeV2/c4 is $$ {1.03}_{-0.24}^{+0.28} $$ 1.03 − 0.24 + 0.28 ± 0.01. The first and second uncertainties listed are statistical and systematic, respectively. All results for RK are consistent with Standard Model predictions. We also measure CP-averaged isospin asymmetries in the same q2 bins. The results are consistent with a null asymmetry, with the largest difference of 2.6 standard deviations occurring for the q2 ∈ (1.0, 6.0) GeV2/c4 bin in the mode with muon final states. The measured differential branching fractions, $$ d\mathrm{\mathcal{B}} $$ d ℬ /dq2, are consistent with theoretical predictions for charged B decays, while the corresponding values are below the expectations for neutral B decays. We have also searched for lepton-flavor-violating B → Kμ±e∓ decays and set 90% confidence-level upper limits on the branching fraction in the range of 10−8 for B+ → K+μ±e∓, and B0 → K0μ±e∓ modes.


2007 ◽  
Vol 644 (1) ◽  
pp. 20-24 ◽  
Author(s):  
M. Ablikim ◽  
J.Z. Bai ◽  
Y. Ban ◽  
X. Cai ◽  
H.F. Chen ◽  
...  

2015 ◽  
Vol 30 (15) ◽  
pp. 1530041 ◽  
Author(s):  
Eung Jin Chun

In a supersymmetric U(1)′ seesaw model, a right-handed sneutrino can be a good thermal dark matter candidate if the extra gaugino [Formula: see text] is light enough to provide an appropriate annihilation cross-section through a t-channel diagram. We first discuss how right thermal relic density of the right-handed sneutrino dark matter can arise and then explore lepton number and flavor violating signatures followed by cascade production of [Formula: see text] from the third generation squarks at the LHC.


2000 ◽  
Vol 39 (05) ◽  
pp. 121-126 ◽  
Author(s):  
R. Werz ◽  
P. Reuland

Summary Aim of the study was to find out wether there is a common stop of growth of mandibular bone, so that no individual determination of the optimal time for surgery in patients with asymmetric mandibular bone growth is needed. As there are no epiphyseal plates in the mandibular bone, stop of growth cannot be determined on X-ray films. Methods: Bone scans of 731 patients [687 patients (324 male, 363 female) under 39 y for exact determination of end of growth and 44 (21 male, 23 female) patients over 40 y for evaluation of nongrowth dependant differences in tracer uptake] were reviewed for the study. All the patients were examined 3 hours after injection of 99mTc-DPD. Tracer uptake was measured by region of interest technique in different points of the mandibular bone and in several epiphyseal plates of extremities. Results: Tracer uptake in different epiphyseal plates of the extremities shows strong variation with age and good correlation with reported data of bone growth and closure of the epiphyseal plates. The relative maximum of bone activity is smaller in mandibular bone than in epiphyseal plates, which show well defined peaks, ending at 15-18 years in females and at 18-21 years in males. In contrast, mandibular bone shows no well defined end of growing but a gradually reduction of bone activity which remains higher than bone activity in epiphyseal plates over several years. Conclusion: No well defined end of growth of mandibular bone exists. The optimal age for surgery of asymmetric mandibular bone growth is not before the middle of the third decade of life, bone scans performed earlier for determination of bone growth can be omitted. Bone scans performed at the middle of the third decade of life help to optimize the time of surgical intervention.


Sign in / Sign up

Export Citation Format

Share Document