scholarly journals Finite element approximation of elliptic homogenization problems in nondivergence-form

2020 ◽  
Vol 54 (4) ◽  
pp. 1221-1257 ◽  
Author(s):  
Yves Capdeboscq ◽  
Timo Sprekeler ◽  
Endre Süli

We use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε):D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.

2004 ◽  
Vol 14 (04) ◽  
pp. 603-618 ◽  
Author(s):  
ADRIAN DUNCA ◽  
VOLKER JOHN

This paper analyzes finite element approximations of space averaged flow fields which are given by filtering, i.e. averaging in space, the solution of the steady state Stokes and Navier–Stokes equations with a differential filter. It is shown that [Formula: see text], the error of the filtered velocity [Formula: see text] and the filtered finite element approximation of the velocity [Formula: see text], converges under certain conditions of higher order than [Formula: see text], the error of the velocity and its finite element approximation. It is also proved that this statement stays true if the L2-error of finite element approximations of [Formula: see text] and [Formula: see text] is considered. Numerical tests in two and three space dimensions support the analytical results.


1989 ◽  
Vol 42 (11S) ◽  
pp. S150-S156
Author(s):  
Abimael F. D. Loula ◽  
Joa˜o Nisan C. Guerreiro

We apply the mixed Petrov–Galerkin formulation to construct finite element approximations for transient and steady-state creep problems. With the new approach we recover stability, convergence, and accuracy of some Galerkin unstable approximations. We also present the main results on the numerical analysis and error estimates of the proposed finite element approximation for the steady problem, and discuss the asymptotic behavior of the continuum and discrete transient problems.


2016 ◽  
Vol 16 (3) ◽  
pp. 447-458 ◽  
Author(s):  
Helmut Harbrecht ◽  
Reinhold Schneider

AbstractBy employing the infinite multilevel representation of the residual, we derive computable bounds to estimate the distance of finite element approximations to the solution of the Poisson equation. If the finite element approximation is a Galerkin solution, the derived error estimator coincides with the standard element and edge based estimator. If Galerkin orthogonality is not satisfied, then the discrete residual additionally appears in terms of the BPX preconditioner. As a by-product of the present analysis, conditions are derived such that the hierarchical error estimation is reliable and efficient.


2018 ◽  
Vol 40 (1) ◽  
pp. 29-86 ◽  
Author(s):  
Andrea Bonito ◽  
Vivette Girault ◽  
Endre Süli

AbstractWe construct a finite element approximation of a strain-limiting elastic model on a bounded open domain in $\mathbb{R}^d$, $d \in \{2,3\}$. The sequence of finite element approximations is shown to exhibit strong convergence to the unique weak solution of the model. A rate of convergence for the sequence of finite element approximations is shown provided that the material parameters featuring in the model are Lipschitz continuous and that the exact solution possesses additional regularity. A rate of convergence for the sequence of finite element approximations is shown provided that the material parameters featuring in the model are Lipschitz continuous and that the exact solution possesses additional regularity. An iterative algorithm is constructed for the solution of the system of nonlinear algebraic equations that arises from the finite element approximation. An appealing feature of the iterative algorithm is that it decouples the monotone and linear elastic parts of the nonlinearity in the model. In particular, our choice of piecewise constant approximation for the stress tensor (and continuous piecewise linear approximation for the displacement) allows us to compute the monotone part of the nonlinearity by solving an algebraic system with $d(d+1)/2$ unknowns independently on each element in the subdivision of the computational domain. The theoretical results are illustrated by numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document