homogeneous dirichlet boundary condition
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Menglan Liao ◽  
Zhong Tan

The purpose of this paper is to study the following equation driven by a nonlocal integro-differential operator $\mathcal{L}_K$: \[u_{tt}+[u]_s^{2(\theta-1)}\mathcal{L}_Ku+a|u_t|^{m-1}u_t=b|u|^{p-1}u\] with homogeneous Dirichlet boundary condition and initial data, where $[u]^2_s$ is the Gagliardo seminorm, $a\geq 0,~b>0,~0


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xiaorong Zhang ◽  
Zhoujin Cui

This paper deals with a class of quasilinear parabolic equation with power nonlinearity and nonlocal source under homogeneous Dirichlet boundary condition in a smooth bounded domain; we obtain the blow-up condition and blow-up results under the condition of nonpositive initial energy.


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


2020 ◽  
Vol 54 (4) ◽  
pp. 1221-1257 ◽  
Author(s):  
Yves Capdeboscq ◽  
Timo Sprekeler ◽  
Endre Süli

We use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε):D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.


2020 ◽  
pp. 1-23
Author(s):  
Claudia Anedda ◽  
Fabrizio Cuccu ◽  
Silvia Frassu

Abstract Let $\Omega \subset \mathbb {R}^N$ , $N\geq 2$ , be an open bounded connected set. We consider the fractional weighted eigenvalue problem $(-\Delta )^s u =\lambda \rho u$ in $\Omega $ with homogeneous Dirichlet boundary condition, where $(-\Delta )^s$ , $s\in (0,1)$ , is the fractional Laplacian operator, $\lambda \in \mathbb {R}$ and $ \rho \in L^\infty (\Omega )$ . We study weak* continuity, convexity and Gâteaux differentiability of the map $\rho \mapsto 1/\lambda _1(\rho )$ , where $\lambda _1(\rho )$ is the first positive eigenvalue. Moreover, denoting by $\mathcal {G}(\rho _0)$ the class of rearrangements of $\rho _0$ , we prove the existence of a minimizer of $\lambda _1(\rho )$ when $\rho $ varies on $\mathcal {G}(\rho _0)$ . Finally, we show that, if $\Omega $ is Steiner symmetric, then every minimizer shares the same symmetry.


Author(s):  
Mihai Mihăilescu

Abstract We show that the spectrum of the relativistic mean curvature operator on a bounded domain Ω ⊂ ℝ N (N ⩾ 1) having smooth boundary, subject to the homogeneous Dirichlet boundary condition, is exactly the interval (λ1(2), ∞), where λ1(2) stands for the principal frequency of the Laplace operator in Ω.


2018 ◽  
Vol 149 (2) ◽  
pp. 495-510 ◽  
Author(s):  
Maria Fărcăşeanu ◽  
Mihai Mihăilescu

Let Ω⊂ℝN (N≥2) be a bounded domain with smooth boundary and {pn} be a sequence of real numbers converging to+∞ as n→∞. For each integer n>1, we define the function $\varphi_{n}(t)=p_{n} \vert t \vert^{p_{n}-2}te^{ \vert t \vert^{p_{n}}}$, for all t∈ℝ, and we prove the existence of a unique nonnegative variational solution for the problem−div(((φn(|∇ u(x)|))/(|∇ u(x)|))∇ u(x))=φn(1), when x∈Ω, subject to the homogeneous Dirichlet boundary condition. Next, we establish the uniform convergence in Ω of the sequence of solutions for the above family of equations to the distance function to the boundary of Ω. Our result complements the earlier developments on the topic obtained by Payne and Philippin [26], Kawohl [21], Bhattacharya, DiBenedetto and Manfredi [2], Perez-Llanos and Rossi [27] and Bocea and Mihăilescu [4].


2018 ◽  
Vol 24 (2) ◽  
pp. 569-578
Author(s):  
Mihai Mihăilescu ◽  
Denisa Stancu−Dumitru ◽  
Csaba Varga

Let Ω ⊂ ℝN (N ≥ 2) be a bounded domain with smooth boundary. We show the existence of a positive real number λ* such that for each λ ∈ (0, λ*) and each real number p > N the equation −Δp u = λeu in Ω subject to the homogeneous Dirichlet boundary condition possesses a nonnegative solution up. Next, we analyze the asymptotic behavior of up as p → ∞ and we show that it converges uniformly to the distance function to the boundary of the domain.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Wenyan Chen ◽  
Ya Chen

A Lotka-Volterra competition model with cross-diffusions under homogeneous Dirichlet boundary condition is considered, where cross-diffusions are included in such a way that the two species run away from each other because of the competition between them. Using the method of upper and lower solutions, sufficient conditions for the existence of positive solutions are provided when the cross-diffusions are sufficiently small. Furthermore, the investigation of nonexistence of positive solutions is also presented.


Sign in / Sign up

Export Citation Format

Share Document