Platelet Adhesion to Subendothelium - Effect of Shear Rate, Hematocrit and Platelet Count on the Dynamic Equilibrium Between Platelets Adhering to and Detaching from the Surface
SummaryThe adherence of human 3H-adenine-labeled platelets to rat subendothelium was quantitated using a rotating probe device. Platelet adhesion increased in relation to the rotation time, reaching a plateau value in about 4-6 min without any further increase. A non-linear fitting analysis of experimental data allowed calculations of initial rate and plateau value of platelet adhesion. Increasing the shear rates (from 35 to 150 sec-1) or the hematocrit (from 10% to 40%), both the adhesion rate and the plateau value were increased. When different platelet concentrations were used the adhesion rate and the plateau calculated increased with platelet concentration. Different plateau values were obtained in the experimental conditions considered. This suggests that the plateau was not reached for the complete occupation of the subendothelial surface by the adherent platelets. Experiments using two different vessels rotated in the same platelet suspension or, viceversa, the same vessel rotated successively in two fresh platelet suspensions, showed that the plateau was not determined by reduced platelet reactivity. Rotating the same vessel first in radiolabeled platelets, until the plateau was reached, and secondly in non labeled platelets, or viceversa, showed that the plateau was indeed a dynamic condition where the number of platelets adhering and detaching reached equilibrium. These observations suggest that the platelet adhesion to subendothelium is the final equilibrium of two platelet fluxes, one adhering to the surface and another detaching from the surface.