Improved Spectral Representation Method for the Simulation of Stochastic Wind Velocity Field Based on FFT Algorithm and Polynomial Decomposition

2018 ◽  
Vol 144 (2) ◽  
pp. 04017171 ◽  
Author(s):  
Koffi Togbenou ◽  
Huoyue Xiang ◽  
Yongle Li ◽  
Ning Chen
2018 ◽  
Vol 22 (6) ◽  
pp. 1255-1265 ◽  
Author(s):  
Yongle Li ◽  
Chuanjin Yu ◽  
Xingyu Chen ◽  
Xinyu Xu ◽  
Koffi Togbenou ◽  
...  

A growing number of long-span bridges are under construction across straits or through valleys, where the wind characteristics are complex and inhomogeneous. The simulation of inhomogeneous random wind velocity fields on such long-span bridges with the spectral representation method will require significant computation resources due to the time-consuming issues associated with the Cholesky decomposition of the power spectrum density matrixes. In order to improve the efficiency of the decomposition, a novel and efficient formulation of the Cholesky decomposition, called “Band-Limited Cholesky decomposition,” is proposed and corresponding simulation schemes are suggested. The key idea is to convert the coherence matrixes into band matrixes whose decomposition requires less computational cost and storage. Subsequently, each decomposed coherence matrix is also a band matrix with high sparsity. As the zero-valued elements have no contribution to the simulation calculation, the proposed method is further expedited by limiting the calculation to the non-zero elements only. The proposed methods are data-driven ones, which can be applicable broadly for simulating many complicated large-scale random wind velocity fields, especially for the inhomogeneous ones. Through the data-driven strategies presented in the study, a numerical example involving inhomogeneous random wind velocity field simulation on a long-span bridge is performed. Compared to the traditional spectral representation method, the simulation results are with high accuracy and the entire simulation procedure is about 2.5 times faster by the proposed method for the simulation of one hundred wind velocity processes.


2021 ◽  
Vol 7 ◽  
Author(s):  
P. Hong ◽  
H. P. Hong

The time history analysis is used to estimate the peak responses of structures subjected to stationary and nonstationary winds. The time histories of the fluctuating wind processes at multiple points can be simulated based on the spectral representation method for given target auto and cross power spectral density (PSD) functions. As the number of the processes of interest increases, the computation time for the simulation increases drastically. For the stationary homogeneous or nonhomogeneous wind fields, this problem can be overcome by using the frequency-wavenumber PSD function to simulate the stochastic propagating waves or fields. In the present study, a technique to simulate the amplitude modulated and frequency modulated nonstationary and nonhomogeneous stochastic propagating wind fields is presented. The technique relies on representing the nonstationary wind velocity by amplitude modulating a process that is time transformed from a stationary process. It is based on the established relations between the PSD functions of the nonstationary and of the stationary wind velocity. Simple to use and implement equations to carry out the simulation for one-dimensional line wind velocity field and two-dimensional nonstationary and nonhomogeneous wind velocity field are presented. The use of the developed technique and its adequacy is illustrated through numerical examples.


2013 ◽  
Vol 18 (3) ◽  
pp. 458-475 ◽  
Author(s):  
Yongxin Wu ◽  
Yufeng Gao ◽  
Dayong Li ◽  
Tugen Feng ◽  
Ali H. Mahfouz

Author(s):  
Yuechang Wang ◽  
Abdullah Azam ◽  
Mark CT Wilson ◽  
Anne Neville ◽  
Ardian Morina

The application of the spectral representation method in generating Gaussian and non-Gaussian fractal rough surfaces is studied in this work. The characteristics of fractal rough surfaces simulated by the spectral representation method and the conventional Fast Fourier transform filtering method are compared. Furthermore, the fractal rough surfaces simulated by these two methods are compared in the simulation of contact and lubrication problems. Next, the influence of low and high cutoff frequencies on the normality of the simulated Gaussian fractal rough surfaces is investigated with roll-off power spectral density and single power-law power spectral density. Finally, a simple approximation method to generate non-Gaussian fractal rough surfaces is proposed by combining the spectral representation method and the Johnson translator system. Based on the simulation results, the current work gives recommendations on using the spectral representation method and the Fast Fourier transform filtering method to generate fractal surfaces and suggestions on selecting the low cutoff frequency of the power-law power spectral density. Furthermore, the results show that the proposed approximation method can be a choice to generate non-Gaussian fractal surfaces when the accuracy requirements are not high. The MATLAB codes for generating Gaussian and non-Gaussian fractal rough surfaces are provided.


2019 ◽  
Vol 9 (24) ◽  
pp. 5506
Author(s):  
Zidong Xu ◽  
Hao Wang ◽  
Han Zhang ◽  
Kaiyong Zhao ◽  
Hui Gao ◽  
...  

Numerical simulation of the turbulent wind field on long-span bridges is an important task in structural buffeting analysis when it comes to the system non-linearity. As for non-stationary extreme wind events, some efforts have been paid to update the classic spectral representation method (SRM) and the fast Fourier transform (FFT) has been introduced to improve the computational efficiency. Here, the non-negative matrix factorization-based FFT-aided SRM has been updated to generate not only the horizontal non-stationary turbulent wind field, but also the vertical one. Specifically, the evolutionary power spectral density (EPSD) is estimated to characterize the non-stationary feature of the field-measured wind data during Typhoon Wipha at the Runyang Suspension Bridge (RSB) site. The coherence function considering the phase angles is utilized to generate the turbulent wind fields for towers. The simulation accuracy is validated by comparing the simulated and target auto-/cross-correlation functions. Results show that the updated method performs well in generating the non-stationary turbulent wind field. The obtained wind fields will provide the research basis for analyzing the non-stationary buffeting behavior of the RSB and other wind-sensitive structures in adjacent regions.


Sign in / Sign up

Export Citation Format

Share Document