Experimental and Numerical Studies on Geopolymer Concrete Beams under Cyclic Loading

Author(s):  
Saranya P ◽  
Praveen Nagarajan ◽  
Shashikala Aikot Pallikkara
2019 ◽  
Vol 969 ◽  
pp. 291-296 ◽  
Author(s):  
P. Saranya ◽  
Praveen Nagarajan ◽  
A.P. Shashikala ◽  
Abdu P. Salam

Geopolymer concrete (GPC) is the most advanced form of concrete amongst the various types of concrete developed so far. This paper aims at investigating the feasibility of using Ground Granulated Blast furnace Slag (GGBS) as a base material for geopolymer concrete. Effect of dolomite, which is a by-product from rock crushing plant on GGBS based GPC, was studied. Maximum compressive strength was obtained when GGBS and dolomite were proportioned at 70:30. Steel fibres were added to geopolymer concrete (SFGPC) to improve the ductile behaviour and its brittleness index was compared with Ordinary Portland Cement (OPC) concrete. Strength and behaviour of GGBS-Dolomite GPC and SFGPC flexural member subjected to cyclic loading are explained in this paper. Steel fibres are added at 0.25%, 0.5% and 0.75% volume fraction of concrete. Properties such as load deflection behaviour, ultimate load, crack width and ductility were compared with OPC concrete beams.


2019 ◽  
Author(s):  
Dr. G. Narayana ◽  
Naveena M. P. ◽  
Ravichandra R. ◽  
P. Ramachandra

Author(s):  
E. S. Ege ◽  
Y.-L. Shen

Experimental and numerical studies on fast cyclic loading of eutectic tin-lead solder and relevant micromechanical issues are presented. High-frequency twin-lap shear tests on solder joints show cracking inside the solder but often connecting the intruded tips of the intermetallic. Finite element modeling was carried out to study the effect of intermetallic morphology. Without the influence of local phase coarsening, the intrusion of intermetallic into the solder alloy is seen to trigger strain localization which promotes failure. The effect of local phase coarsening was also studied numerically, taking into account the individual phase arrangement. A coarser phase structure always shows a faster accumulation of local plastic strain, leading to early failure. Such results, in agreement with typical thermomechanical fatigue features, cannot be obtained from the traditional argument of strength vs. microstructural size. Modeling of the entire lap-shear specimen was also conducted for the purpose of quantifying the deformation behavior. The exact geometry of solder is found to play a dominant role in affecting the shear response.


Vestnik MGSU ◽  
2019 ◽  
pp. 22-32
Author(s):  
Farit S. Zamaliev

Introduction. Conducted is to the evaluation of the stress-strain state of the steel-concrete beams with thin-walled section. In recent times, steel-reinforced concrete structures have become widely used in civilian buildings (beams, slabs, columns). Thin-walled section have not found wide application in steel concrete structures, unlike steel structures. Presents the results of numerical studies of beams consisting of concrete, anchors and steel beams. Two investigating of the location of anchors are given. Numerical investigations are presented of steel-concrete beams with thin-walled section based on numerical studies. Testing procedure and test result are given. Results of calculations, comparison of numerical and experimental studies are presented. Materials and methods. For full-scale experiments, steel I-beams with filling of side cavities with concrete were adopted, screws are used as anchor ties, with varied both the lengths and their location (vertically and obliquely). As steel curved C-shaped steel profiles were used steel profiles from the range of the company “Steel Faces”. ANSYS software package was used for computer modeling. A total of 16 steel concrete beams were considered, for which the results of strength and stiffness evaluation were obtained in ANSYS. Results. The data of the stress-strain state of beams on the basis of computer simulation are obtained. The results are used for the production of field samples. Data of computer simulation are compared with the indicators of field experiments. Conclusions. The stress-strain state of steel-concrete structures was studied on the basis of numerical and experimental data. The proposed calculation method gives good convergence with the experimental data. Anchor connections made from self-tapping screws can be used in studies for modeling in steel-concrete beams structures and other anchor devices, ensuring the joint operation of concrete and steel profiles in structures.


Author(s):  
Indrayani Indrayani ◽  
Lina Flaviana Tilik ◽  
Djaka Suhirkam ◽  
Suhadi Suhadi ◽  
Muhammad Prawira Wardana ◽  
...  

Currently, innovation continues to be developed to replace cement with other materials so that the use of cement as a building material can be reduced. Utilization of coal waste (fly ash) is an alternative to subtitude cement. From previous studies, fly ash mixed with alkaline materials in the form of NaOH and Na2SiO3 in a ratio of 1:5 can produce geopolymer concrete. This geopolymer concrete research was continued by adding bendrat wire fibers into the geopolymer concrete mixture. The method used in testing the aggregate, testing the compressive strength of normal concrete K225, testing the flexural strength of normal concrete and geopolymer concrete refers to SNI. Another additional material that is mixed is bendrat wire fiber. The research was carried out in the form of making flexible beams of 10 cm x 10 cm x 50 cm with fiber variations of 0%, 0.5%, and 1,0% at the age of 14 and 28 days. The results of the flexural strength test of the BN beam at the age of 28 days can withstand loads than BG. The average flexural strength obtained with variations of BN, BN+SB 0.5% and BN+SB 1.0% respectively were 2.796 MPa, 3.113 MPa, and 3.879 MPa. The results of testing the average flexural strength of geopolymer concrete beams at 28 days, obtained variations of BG, BG+SB 0.5%, and BG+SB 1.0% respectively were 0 MPa, 0.055 MPa and 0.104 MPa. In addition, geopolymer concrete cannot be used as a beam and the addition of bendrat wire fiber to geopolymer concrete cannot withstand the tensile load on the concrete.


Sign in / Sign up

Export Citation Format

Share Document