Using Trucksim to Explore the Longitudinal Slope of “ETR” in Snow Areas

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Jie Mei ◽  
Binghong Pan ◽  
Chanjun Yang
Keyword(s):  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jerzy Bienek ◽  
Piotr Komarnicki ◽  
Jerzy Detyna

AbstractThis article presents the main problems associated with cereal harvesting in sloping areas. The presented innovative aerodynamic system supporting the separating unit of combine harvester can be one of the ways to counteract the negative effects of harvesting machines work on slopes. The Monte Carlo numerical method, presented in this article, was applied in the optimization of an aerodynamic sieve separation process on an inclined terrain. The given variables are the transverse slope of separator α (of the sieve), longitudinal slope β and the output of the main and side fans. The Monte Carlo method makes it possible to determine an optimized set of parameters (α = 10°, β = 2.8°, δ = 9°), the output of the main fan (0.67 m3 s−1) and the output of the side fan (1.86 m3 s−1), allowing to obtain the best indicator values of 2.1% grain loss and 97.5% grain purity.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1532
Author(s):  
Mariusz Pasik ◽  
Krzysztof Bakuła ◽  
Sebastian Różycki ◽  
Wojciech Ostrowski ◽  
Maria Elżbieta Kowalska ◽  
...  

This paper presents changes in the range and thickness of glaciers in Antarctic Specially Protected Area (ASPA) No. 128 on King George Island in the period 1956–2015. The research indicates an intensification of the glacial retreat process over the last two decades, with the rate depending on the type of glacier front. In the period 2001–2015, the average recession rate of the ice cliffs of the Ecology Glacier and the northern part of the Baranowski Glacier was estimated to be approximately 15–25 m a−1 and 10–20 m a−1, respectively. Fronts of Sphinx Glacier and the southern part of the Baranowski Glacier, characterized by a gentle descent onto land, show a significantly lower rate of retreat (up to 5–10 m a−1 1). From 2001 to 2013, the glacier thickness in these areas decreased at an average rate of 1.7–2.5 m a−1 for the Ecology Glacier and the northern part of the Baranowski Glacier and 0.8–2.5 m a−1 for the southern part of the Baranowski Glacier and Sphinx Glacier. The presented deglaciation processes are related to changes of mass balance caused by the rapid temperature increase (1.0 °C since 1948). The work also contains considerations related to the important role of the longitudinal slope of the glacier surface in the connection of the glacier thickness changes and the front recession.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Guozhu Cheng ◽  
Rui Cheng ◽  
Yulong Pei ◽  
Liang Xu

To predict the probability of roadside accidents for curved sections on highways, we chose eight risk factors that may contribute to the probability of roadside accidents to conduct simulation tests and collected a total of 12,800 data obtained from the PC-crash software. The chi-squared automatic interaction detection (CHAID) decision tree technique was employed to identify significant risk factors and explore the influence of different combinations of significant risk factors on roadside accidents according to the generated decision rules, so as to propose specific improved countermeasures as the reference for the revision of the Design Specification for Highway Alignment (JTG D20-2017) of China. Considering the effects of related interactions among different risk factors on roadside accidents, path analysis was applied to investigate the importance of the significant risk factors. The results showed that the significant risk factors were in decreasing order of importance, vehicle speed, horizontal curve radius, vehicle type, adhesion coefficient, hard shoulder width, and longitudinal slope. The first five important factors were chosen as predictors of the probability of roadside accidents in the Bayesian network analysis to establish the probability prediction model of roadside accidents. Eventually, the thresholds of the various factors for roadside accident blackspot identification were given according to probabilistic prediction results.


2019 ◽  
pp. 22-30

Un Modelo Numérico 1D en Volúmenes Finitos para la Solución de las Ecuaciones de Flujo e Infiltración del Riego por Gravedad en Melgas A Numerical Model 1D in Finite Volumes for the Solution of the Equations of Flow and Infiltration of the Gravity in Border Irrigation Pino Vargas Edwin, Mejía Marcacuzco J. Abel, Chávarri Velarde Eduardo Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú Universidad Nacional Agraria La Molina, Lima, Perú DOI: https://doi.org/10.33017/RevECIPeru2012.0006/ RESUMEN El desarrollo de este modelo permitirá contar con una herramienta computacional para diseñar adecuadamente el sistema de riego por melgas, reduciendo las pérdidas de agua y utilizándola de manera optima para mejorar la productividad de los cultivos, bajo las premisas de uso eficiente de agua, es decir cultivos de mayor productividad, al más bajo consumo de agua, usando metodologías de producción óptimas. Se implemento el esquema numérico en volúmenes finitos para las ecuaciones de flujo Saint Venant, lo cual permitió conocer el perfil de flujo superficial y la infiltración en el suelo según el avance del riego. Luego del proceso de simulación de varios casos se logro establecer que pendiente longitudinal juega un papel importante en el flujo para las melgas según el modelo planteado se tiene que la pendiente debe ser menor 0,001 m/m. Las pendientes mayores generan flujos rápidos o súper críticos lo cual no es recomendable en el diseño de las melgas, puesto que será una fuente directa de erosión. En cuanto a los caudales de ingreso a las melgas la bibliografía señala un rango para melgas de 1 a 5 l/s/m, lo cual ha sido empleado en el modelo sin ningún inconveniente. En este trabajo se reduce la ecuación de Richards a su expresión unidimensional más su componente temporal y los resultados cumplen satisfactoriamente el objetivo de predecir el movimiento del agua en el subsuelo a partir de datos de propiedades físicas de los suelos y condiciones impuestas tipo dirichlet de carga de agua sobre el suelo. En cuanto a la validación del modelo matemático con datos referenciales de trabajos de investigación se uso el trabajo realizado por Saucedo (2005) para el flujo en superficie y Dahualde G. (2005) para el proceso de infiltración. Se puede contrastar los resultados con algunas diferencias atribuibles a la solución de las ecuaciones, al método numérico empleado y el esquema de solución. Descriptores: Flujo Superficial, Volúmenes Finitos, Infiltración, Modelamiento Numérico 1D, Melgas. ABSTRACT The development of this model will allow to possess a computational tool to design adequately the system of border irrigation, reducing the water loss and using in an ideal way to improve the productivity of the cultures, under the premises of efficient use of water, that is to say cultures of major productivity, to the lowest consumption of water, using methodologies of production optimal. Was implemented the numerical scheme in finite volumes for the equations of flow Saint Venant, which allowed knowing the profile of superficial flow and the infiltration in the soil according to the advance of the irrigation. After the process of simulation of several, cases, was managed to establish that the longitudinal slope plays an important paper in the flow for the border irrigation according to the raised model the slope must be minor 0,001 m/m. The major slopes generate rapid or supercritical flows, which is not advisable in the design of the border irrigation, since it will be a direct source of erosion. As for flows of revenue of border irrigation the bibliography indicates a range from 1 to 5 l/s/m, which has been an employee in the model without any disadvantage. In this work Richards's equation is diminishes to his expression unidimensional more his temporary component and the results fulfill satisfactorily the aim to predict the movement of the water in the subsoil, from information of physical properties of the soils 23 and imposed conditions dirichlet type of water load on the soil. As for the validation of the mathematical model with referential data of works of investigation was used the work realized by Osier-bed (2005) for the flow in surface and Dahualde G. (2005) for the process of infiltration. It is possible to confirm the results with some differences attributable to the solution of the equations, to the numerical used method and the scheme of solution. Keywords: Superficial flow, Finite Volumes, Infiltration, Numerical Modeling 1D, Border Irrigation.


1960 ◽  
Vol 4 (03) ◽  
pp. 25-36
Author(s):  
Milton S. Plesset ◽  
T. Yao-tsu Wu

The problem of interest is that of the water waves in a body of water of infinite depth generaied by a thin ship of given hull form, moving with constant velocity U along a straight course on the otherwise undisturbed water surface. A particular method is evaluated for computing the velocity field at an arbitrary distance (not too near the ship) fixed in the fluid. A new proposal is made here that the hull profile be represented by a double Fourier series with its half-periods spanning over the region occupied by the longitudinal mid-section of the ship. The convergence of this series representation is found to be satisfactorily rapid, especially when the tangent plane of the hull is everywhere continuous. In the latter case the longitudinal slope of the hull, which is the only partial derivative appearing in the analysis, is found in a specific case to be well represented by the partial derivative of the series. With this series representation of the hull, the analysis of the velocity-field calculation is greatly reduced so that the final result can be expressed in terms of a combination of several single and double Fourier integrals which are susceptible to numerical methods. However, for large values of or, where r is the distance from the ship, a = gL/U2, with g being the acceleration of gravity and L the ship length, these integrals can be evaluated with good approximation by asymptotic methods. The method of stationary phase and other asymptotic methods are employed in different regions in the water and the final expression for the velocity field is given explicitly. The numerical result for a specific ship will be given elsewhere.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 851 ◽  
Author(s):  
Li ◽  
Fang ◽  
Chen ◽  
Gong ◽  
Wang ◽  
...  

An updated two-dimensional flow simulation program, FullSWOF-ZG, which fully (Full) solves shallow water (SW) equations for overland flow (OF) and includes submodules modeling infiltration by zones (Z) and flow interception by grate-inlet (G), was tested with 20 locally depressed curb inlets to validate the inlet efficiency (Eci), and with 80 undepressed curb inlets to validate the inlet lengths (LT) for 100% interception. Previous curb inlet equations were based on certain theoretical approximations and limited experimental data. In this study, 1000 road-curb inlet modeling cases from the combinations of 10 longitudinal slopes (S0, 0.1–1%), 10 cross slopes (Sx, 1.5–6%), and 10 upstream inflows (Qin, 6–24 L/s) were established and modeled to determine LT. The second 1000 modeling cases with the same 10 S0 and 10 Sx and 10 curb inlet lengths (Lci, 0.15–1.5 m) were established to determine Eci. The LT and Eci regression equations were developed as a function of input parameters (S0, Sx, and Qin) and Lci/LT with the multiple linear regression method, respectively. Newly developed regression equations were applied to 10,000 inlet design cases (10 S0, 10 Sx, 10 Qin, and 10 Lci combinations) and comprehensively compared with three equations in previous studies. The 100% intercepted gutter flow (Qg100) equations were derived, and over-prediction of Qg100 from previous methods was strongly correlated to smaller S0. Newly developed equations gave more accurate estimations of LT and Eci over a wide range of input parameters. These equations can be applied to designing urban drainage and road bioretention facilities, since they were developed using a large number of simulation runs with diverse input parameters, but previous methods often overpredict the gutter flow of total interception when the longitudinal slope S0 is small.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shoushuo Wang ◽  
Zhigang Du ◽  
Fangtong Jiao ◽  
Libo Yang ◽  
Yudan Ni

This study aims to investigate the impact of the urban undersea tunnel longitudinal slope on the visual characteristics of drivers. 20 drivers were enrolled to conduct the real vehicle test of the urban undersea tunnel. First, the data of average fixation time and visual lobe were collected by an eye tracker. The differential significance was tested using the one-way repeated measures analysis of variance (ANOVA). Then, the difference between the up-and-down slope (direction) factor and the longitudinal slope (percent) factor on the two indexes were analyzed using the two-way repeated measures ANOVA. Second, by constructing a Lorentz model, the impact of the longitudinal slope on the average fixation time and the visual lobe were analyzed. Besides, a three-dimensional model of the longitudinal slope, average fixation time, and visual lobe was quantified. The results showed that the average fixation time and visual lobe under different longitudinal slopes markedly differed when driving on the uphill and downhill sections. The average fixation time and visual lobe under two factors were markedly different. Moreover, with an increase in the longitudinal slope, the average fixation time exhibited a trend of increasing first then decreasing; the visual lobe exhibited a trend of decreasing first and then increasing. The average fixation time reached the minimum and maximum value when the slope was 2.15% and 4.0%, whereas the visual lobe reached the maximum and minimum value when the slope was 2.88% and 4.0%. Overall, the longitudinal slope exerted a great impact on the visual load of the driver.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yaping Dong ◽  
Jinliang Xu

Predicting vehicle carbon emissions on vertical curve sections can provide guidance for low-carbon vertical profile designs. Given that the influence of vertical curve design indicators on the fuel consumption and CO2 emissions of vehicles are underexplored, this study filled this research gap by establishing a theoretical carbon emission model of vehicles on vertical curve sections. The carbon emission model was established based on Xu’s vehicle energy conversion model, the conversion model of energy, fuel consumption, and CO2 emissions. The accuracy of the theoretical carbon emission model and the CO2 emission rules on vertical curve sections were verified by field test results. Field tests were carried out on flat sections, longitudinal slope sections, and various types of vertical curve sections, with five common types of vehicles maintaining cruising speed. The carbon emission rate effects on the vertical curve are closely related to the gradient and irrelevant of the radius. On the vertical profile composed with downhill/asymmetric/symmetrical vertical curve with a gradient greater than the balance gradient, the carbon emission rate is determined by the gradient and radius. The influence of the gradient on carbon emissions of vehicle on these vertical profiles was more significant than the radius. The radius is irrelevant to the carbon emission rate on the other forms of vertical profile. These results may benefit highway designers and engineers by providing guidelines regarding the environmental effects of highway vertical curve indexes.


Sign in / Sign up

Export Citation Format

Share Document