The role of large-amplitude motions in the spectroscopy and dynamics of H5+

2014 ◽  
Vol 140 (11) ◽  
pp. 114305 ◽  
Author(s):  
Zhou Lin ◽  
Anne B. McCoy
2020 ◽  
Vol 7 (11) ◽  
pp. 2951-2958
Author(s):  
Joshua W. R. Macdonald ◽  
Giacomo Piana ◽  
Massimiliano Comin ◽  
Elizabeth von Hauff ◽  
Gabriele Kociok-Köhn ◽  
...  

Large amplitude motions in molecular solids are responsible for anomalous electrical characteristics in amphidynamic crystals. Here we explore the implications for charge transfer excitons photophysics.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ha Vinh Lam Nguyen ◽  
Isabelle Kleiner

AbstractA large variety of molecules contain large amplitude motions (LAMs), inter alia internal rotation and inversion tunneling, resulting in tunneling splittings in their rotational spectrum. We will present the modern strategy to study LAMs using a combination of molecular jet Fourier transform microwave spectroscopy, spectral modeling, and quantum chemical calculations to characterize such systems by the analysis of their rotational spectra. This interplay is particularly successful in decoding complex spectra revealing LAMs and providing reference data for fundamental physics, astrochemistry, atmospheric/environmental chemistry and analytics, or fundamental researches in physical chemistry. Addressing experimental key aspects, a brief presentation on the two most popular types of state-of-the-art Fourier transform microwave spectrometer technology, i.e., pulsed supersonic jet expansion–based spectrometers employing narrow-band pulse or broad-band chirp excitation, will be given first. Secondly, the use of quantum chemistry as a supporting tool for rotational spectroscopy will be discussed with emphasis on conformational analysis. Several computer codes for fitting rotational spectra exhibiting fine structure arising from LAMs are discussed with their advantages and drawbacks. Furthermore, a number of examples will provide an overview on the wealth of information that can be drawn from the rotational spectra, leading to new insights into the molecular structure and dynamics. The focus will be on the interpretation of potential barriers and how LAMs can act as sensors within molecules to help us understand the molecular behavior in the laboratory and nature.


2012 ◽  
Vol 56 (04) ◽  
pp. 215-233
Author(s):  
Johan T. Tuitman ◽  
Šime Malenica ◽  
Riaan van't Veer

The concept of "generalized modes" is to describe all degrees of freedom by mode shapes and not using any predefined shape, like rigid body modes. Generalized modes in seakeeping computations allow one to calculate the response of a single ship, springing, whipping, multibody interaction, etc., using a uniform approach. The generalized modes have already been used for frequency-domain seakeeping calculations by various authors. This article extents the generalized modes methodology to be used for time-domain seakeeping computations, which accounts for large-amplitude motions of the rigid-body modes. The time domain can be desirable for seakeeping computations because it is easy to include nonlinear load components and to compute transient response, like slamming and whipping. Results of multibody interaction, two barges connected by a hinge, whipping response of a ferry resulting from slamming loads, and the response of a flexible barge are presented to illustrate the theory.


1989 ◽  
Vol 113 ◽  
pp. 195-204
Author(s):  
I. Appenzeller

AbstractAs LBVs have luminosities close to their Eddington limits, their structure is profoundly influenced by radiation pressure. Radiation pressure effects probably cause the highly extended atmospheres and the extreme mass loss observed during the maximum states of the S Dor variables. An opacity-related instability of the radiative acceleration combined with a delayed thermal readjustement of the sub-atmospheric layers possibly explains the large-amplitude radius variations of these objects.


Author(s):  
Nuno Fonseca ◽  
Eduardo Antunes ◽  
Carlos Guedes Soares

The paper presents a time domain method to calculate the ship responses in heavy weather, including the global structural loads due to whipping. Since large amplitude waves induce nonlinear ship responses, and in particular highly nonlinear vertical structural loads, the equations of motions and structural loads are solved in the time domain. The “partially nonlinear” time domain seakeeping program accounts for the most important nonlinear effects. Slamming forces are given by the contribution of two components: an initial impact due to bottom slamming and flare slamming due to the variation of momentum of the added mass. The hull vibratory response is calculated applying the modal analysis together with direct integration of the differential equations in the time domain. The structural dynamic characteristics of the hull are modeled by a finite element representation of a Timoshenko beam accounting for the shear deformation and rotary inertia. The calculation procedure is applied to a frigate advancing in regular waves. The contribution of whipping loads to the vertical bending moments on the ship structure is assessed by comparing this response with and without the hull vibration.


Sign in / Sign up

Export Citation Format

Share Document