PETROLEUM POTENTIAL OF THE GREAT SOUTH BASIN, NEW ZEALAND—NEW SEISMIC DATA IMPROVES IMAGING

2007 ◽  
Vol 47 (1) ◽  
pp. 145 ◽  
Author(s):  
C. Uruski ◽  
C. Kennedy ◽  
T. Harrison ◽  
G. Maslen ◽  
R.A. Cook ◽  
...  

Much of the Great South Basin is covered by a 30,000 km grid of old seismic data, dating from the 1970s. This early exploration activity resulted in drilling eight wells, one of which, Kawau–1a, was a 461 Bcf gas-condensate discovery. Three other wells had significant oil and gas shows; in particular, Toroa–1 had extensive gas shows and 300 m oil shows. Cuttings are described in the geological logs as dripping with oil. The well was never tested due to engineering difficulties, meaning that much of the bore was accidentally filled with cement while setting casing.In early 2006, Crown Minerals, New Zealand’s petroleum industry regulating body, conducted a new 2D seismic survey in a previously lightly surveyed region across the northern part of the Great South Basin. While previous surveys were generally recorded for five seconds, sometimes six, with up to a 2,500-metre-long cable, the new survey, acquired by CGG Multiwave’s Pacific Titan, employed a 6,000-metre-long streamer and recorded for eight seconds.The dataset was processed to pre-stack time migration (PreSTM) by the GNS Science group using its access to the New Zealand Supercomputer. Increasing the recording time yielded dividends by more fully imaging, for the first time, the nature of rift faulting in the basin. Previous data showed only the tops of many fault blocks. The new data show a system of listric extensional faults, presumably soling out onto a mid-crust detachment. Sedimentary reflectors are observed to seven seconds, implying a thickness of up to 6,000 m of section, probably containing source rock units. The rotated fault blocks provide focal points for large compaction structures. The new data show amplitude anomalies and other features possibly indicating hydrocarbons associated with many of these structures. The region around the Toroa–1 well was typified by anomalously low velocities, which created a vertical zone of heavily attenuated reflections, particularly on intermediate processing products. The new data also show an amplitude anomaly at the well’s total depth (TD) which gives rise to a velocity push-down.Santonian age coaly source rocks are widespread and several reservoir units are recognised. The reservoir at Kawau–1a is the extensive Kawau Sandstone, an Early Maastrichtian transgressive unit sealed by a thick carbonate-cemented mudstone. In addition to the transgressive sandstone target, the basin also contains sandy Eocene facies, and Paleogene turbidite targets may also be attractive. Closed structures are numerous and many are very large with potential to contain billion barrel oil fields or multi-Tcf gas fields.

2008 ◽  
Vol 48 (1) ◽  
pp. 53 ◽  
Author(s):  
Chris Uruski ◽  
Callum Kennedy ◽  
Rupert Sutherland ◽  
Vaughan Stagpoole ◽  
Stuart Henrys

The East Coast of North Island, New Zealand, is the site of subduction of the Pacific below the Australian plate, and, consequently, much of the basin is highly deformed. An exception is the Raukumara Sub-basin, which forms the northern end of the East Coast Basin and is relatively undeformed. It occupies a marine plain that extends to the north-northeast from the northern coast of the Raukumara Peninsula, reaching water depths of about 3,000 m, although much of the sub-basin lies within the 2,000 m isobath. The sub-basin is about 100 km across and has a roughly triangular plan, bounded by an east-west fault system in the south. It extends about 300 km to the northeast and is bounded to the east by the East Cape subduction ridge and to the west by the volcanic Kermadec Ridge. The northern seismic lines reveal a thickness of around 8 km increasing to 12–13 km in the south. Its stratigraphy consists of a fairly uniformly bedded basal section and an upper, more variable unit separated by a wedge of chaotically bedded material. In the absence of direct evidence from wells and samples, analogies are drawn with onshore geology, where older marine Cretaceous and Paleogene units are separated from a Neogene succession by an allochthonous series of thrust slices emplaced around the time of initiation of the modern plate boundary. The Raukumara Sub-basin is not easily classified. Its location is apparently that of a fore-arc basin along an ocean-to-ocean collision zone, although its sedimentary fill must have been derived chiefly from erosion of the New Zealand land mass. Its relative lack of deformation introduces questions about basin formation and petroleum potential. Although no commercial discoveries have been made in the East Coast Basin, known source rocks are of marine origin and are commonly oil prone, so there is good potential for oil as well as gas in the basin. New seismic data confirm the extent of the sub-basin and its considerable sedimentary thickness. The presence of potential trapping structures and direct hydrocarbon indicators suggest that the Raukumara Sub-basin may contain large volumes of oil and gas.


1999 ◽  
Vol 39 (1) ◽  
pp. 386 ◽  
Author(s):  
R.A. Cook ◽  
R.C. Gregg ◽  
D.J. Bennett

Geochemical studies, reinterpretation of early seismic data and information from new seismic surveys are extending the concept of economic basement for hydrocarbons in several New Zealand basins. Older Cretaceous and even Jurassic and Triassic rocks, previously considered to be 'basement' by petroleum explorationists, may have significance as petroleum prospects.Triassic–Jurassic Murihiku Supergroup sedimentary sequences are up to 15 km thick, and the upper parts are still of low metamorphic rank. Vitrinite reflectances and Hydrogen Indexes from Murihiku Supergroup coals sampled from outcrop and drillholes indicate good oil potential, and, together with rock porosity of up to 18%, suggest that the Murihiku Supergroup may be prospective.In the offshore Canterbury Basin, reinterpretation of seismic data has shown there is probably a thick sedimentary section below what was previously mapped as the regional basement horizon. This seismic interval can be related to a similar section developed in the adjacent Great South Basin where a mid-Cretaceous, rift- fill section of hydrocarbon-bearing rocks, drilled in the Kawau–1 well had good source and reservoir potential.In the onshore Canterbury Basin, a recent vibroseis survey has revealed apparent sedimentary section extending down to more than 4,000 m which might also be the expression of a mid-Cretaceous rift-fill section, similar to that in the nearby Great South Basin and in the formerly adjacent Taranaki Basin, or possibly the older Murihiku Supergroup. This potential for a mature oil and gas source section provides the basis for further exploration of the area.There are similar prospective sequences in several other New Zealand basins.


1995 ◽  
Vol 13 (2-3) ◽  
pp. 245-252
Author(s):  
J M Beggs

New Zealand's scientific institutions have been restructured so as to be more responsive to the needs of the economy. Exploration for and development of oil and gas resources depend heavily on the geological sciences. In New Zealand, these activities are favoured by a comprehensive, open-file database of the results of previous work, and by a historically publicly funded, in-depth knowledge base of the extensive sedimentary basins. This expertise is now only partially funded by government research contracts, and increasingly undertakes contract work in a range of scientific services to the upstream petroleum sector, both in New Zealand and overseas. By aligning government-funded research programmes with the industry's knowledge needs, there is maximum advantage in improving the understanding of the occurrence of oil and gas resources. A Crown Research Institute can serve as an interface between advances in fundamental geological sciences, and the practical needs of the industry. Current publicly funded programmes of the Institute of Geological and Nuclear Sciences include a series of regional basin studies, nearing completion; and multi-disciplinary team studies related to the various elements of the petroleum systems of New Zealand: source rocks and their maturation, migration and entrapment as a function of basin structure and tectonics, and the distribution and configuration of reservoir systems.


2019 ◽  
pp. 16-23
Author(s):  
A. R. Kurchikov ◽  
R. I. Timshanov ◽  
E. A. Ustimenko

Geochemical survey is commonly applied during geological exploration to predict petroleum potential of large areas and to estimate the content of traps identified by the results of seismic survey. C1-C6 hydrocarbon concentrations in samples of surface and subsurface air, soil, snow, water, etc. are used as predictive indicators. At the exploration stage the capabilities of geochemical methods can be significantly expanded by comparing the content of gasoline hydrocarbons in samples of formation fluids and in samples of near-surface sediments. The method of chromatographic analysis of gasolines Chromatec Gazolin has been adapted for sample analysis. The taken measures to increase the sensitivity allowed us to register individual hydrocarbons C1-C10 in concentrations up to 0,01 ppb, which is obviously lower than their background content in the oil prospect areas. The revealed patterns are used in the geological interpretation of geochemical distributions based on theoretical ideas about the subvertical migration of hydrocarbons from the reservoir to the surface.


2010 ◽  
Vol 50 (2) ◽  
pp. 685
Author(s):  
John Polglaze

Legends, myths and plain old misinformation abound of whale migrations interrupted by international shipping, dolphin populations displaced by dredging activities, and of seismic survey campaigns resulting in disoriented, beached whales. While risks exist, in truth the Australian petroleum industry continues to demonstrate that it can successfully coexist productively alongside populations of cetacean. These whales and dolphins are seemingly able to at least tolerate, if not actually be undisturbed by, underwater noise. Other risks to cetaceans from oil and gas activities, whether actual or perceived, encompass vessel strike, turbidity plumes from dredging, port developments, underwater blasting, spills, the laying and operation of pipelines, and similar. URS Australia’s John Polglaze is a specialist in the environmental impact evaluation of underwater noise, and has over 15 years experience in marine environmental management and impact assessment following nearly 20 years service in the Royal Australian Navy. John presents on the range of environmental impact assessment challenges for the oil and gas industry in Australian coastal and offshore regions, and effective, pragmatic solutions for demonstrating low risks to cetaceans and other sensitive marine fauna. These include the application and limitations of computer-based models to predict underwater noise and blast propagation, the development of a risk assessment framework that has proven effective with state and Commonwealth regulators, and case studies of real-life interactions between the petroleum industry and cetacean populations. In particular, he will discuss how misunderstanding and misapprehension of these complex issues unnecessarily complicates the challenges of environmental compliance. This topic is timely, given that Australia’s rapidly increasing whale populations, coupled with the continued expansion of offshore petroleum activities, will lead to more frequent interaction between and overlap of cetaceans and oil and gas activities.


1978 ◽  
Vol 18 (1) ◽  
pp. 34 ◽  
Author(s):  
H. M. J. Stagg

The Scott Plateau and the adjacent Rowley Terrace cover about 130,000 km2 beyond Australia's Northwest Shelf in water depths ranging from 300 m to 3000 m. The regional geology and structural evolution of the area have been interpreted from about 13,000 km of seismic reflection profiles.The Scott Plateau forms a subsided oceanward margin to the Browse Basin. For much of the period from the Carboniferous to the Middle Jurassic, preceding the breakup which formed this part of the continental margin, the Scott Plateau was probably above sea level shedding sediment into the developing Browse Basin. After breakup in the Bathonian to Callovian, the plateau subsided, until by the Late Cretaceous open marine conditions were prevalent over most of the area, with the probable exception of some structurally high areas which may have remained emergent until early in the Tertiary. Carbonate sedimentation commenced in the Santonian and has continued to the present, with major hiatuses in the Paleocene and Oligocene. Analysis of magnetic and seismic data indicates that, over much of the plateau, economic basement of possible Kimberley Block equivalents is probably no more than 3 to 4 km below sea bed. To the south of the Scott Plateau, the Rowley Terrace is underlain by a wedge of at least 6 km of Mesozoic and Tertiary sediments of the northeast- trending Rowley Sub - basin. The Rowley Sub -basin connects with the Beagle Sub-basin to the southwest and probably connects with the Browse Basin to the northeast. It has been largely unaffected by episodes of faulting, except in the southwest where faulting and folding are pronounced. The petroleum potential of the Scott Plateau is not rated highly. The potential hydrocarbon-bearing sediments here are probably no younger than Palaeozoic. These are quite likely to be only 2 to 4 km thick, and any hydrocarbons generated within them would probably have been lost during the protracted period of emergence and erosion that preceded breakup. The hydrocarbon potential appears to be greater in the Rowley Sub-basin, where Triassic to Cretaceous shale and siltstone source rocks, and Triassic to Lower Cretaceous sandstone reservoir rocks are expected to be present. However, the potential of these sequences is downgraded because hydrocarbon shows in exploration wells on the adjacent part of the Northwest Shelf have been only minor, and by the apparent scarcity of suitable traps. Exploitation of any hydrocarbons would be costly owing to the great water depths.


1995 ◽  
Vol 35 (1) ◽  
pp. 358 ◽  
Author(s):  
R. Lovibond ◽  
R.J. Suttill ◽  
J.E. Skinner ◽  
A.N. Aburas

The Penola Trough is an elongate, Late Jurassic to Early Cretaceous, NW-SE trending half graben filled mainly with synrift sediments of the Crayfish Group. Katnook-1 discovered gas in the basal Eumeralla Formation, but all commercial discoveries have been within the Crayfish Group, particularly the Pretty Hill Formation. Recent improvements in seismic data quality, in conjunction with additional well control, have greatly improved the understanding of the stratigraphy, structure and hydrocarbon prospectivity of the trough. Strati-graphic units within the Pretty Hill Formation are now mappable seismically. The maturity of potential source rocks within these deeper units has been modelled, and the distribution and quality of potential reservoir sands at several levels within the Crayfish Group have been studied using both well and seismic data. Evaluation of the structural history of the trough, the risk of a late carbon dioxide charge to traps, the direct detection of gas using seismic AVO analysis, and the petrophysical ambiguities recorded in wells has resulted in new insights. An important new play has been recognised on the northern flank of the Penola Trough: a gas and oil charge from mature source rocks directly overlying basement into a quartzose sand sequence referred to informally as the Sawpit Sandstone. This play was successfully tested in early 1994 by Wynn-1 which flowed both oil and gas during testing from the Sawpit Sandstone. In mid 1994, Haselgrove-1 discovered commercial quantities of gas in a tilted Pretty Hill Formation fault block adjacent to the Katnook Field. These recent discoveries enhance the prospectivity of the Penola Trough and of the Early Cretaceous sequence in the wider Otway Basin where these sediments are within reach of the drill.


2011 ◽  
Vol 51 (2) ◽  
pp. 746
Author(s):  
Irina Borissova ◽  
Gabriel Nelson

In 2008–9, under the Offshore Energy Security Program, Geoscience Australia (GA) acquired 650 km of seismic data, more than 3,000 km of gravity and magnetic data, and, dredge samples in the southern Carnarvon Basin. This area comprises the Paleozoic Bernier Platform and southern part of the Mesozoic Exmouth Sub-basin. The new seismic and potential field data provide a new insight into the structure and sediment thickness of the deepwater southernmost part of the Exmouth Sub-basin. Mesozoic depocentres correspond to a linear gravity low, in water depths between 1,000–2,000 m and contain between 2–3 sec (TWT) of sediments. They form a string of en-echelon northeast-southwest oriented depressions bounded by shallow-dipping faults. Seismic data indicates that these depocentres extend south to at least 24°S, where they become more shallow and overprinted by volcanics. Potential plays in this part of the Exmouth Sub-basin may include fluvio-deltaic Triassic sandstone and Lower–Middle Jurassic claystone source rocks sealed by the regional Early Cretaceous Muderong shale. On the adjoining Bernier Platform, minor oil shows in the Silurian and Devonian intervals at Pendock–1a indicate the presence of a Paleozoic petroleum system. Ordovician fluvio-deltaic sandstones sealed by the Silurian age marine shales, Devonian reef complexes and Miocene inversion anticlines are identified as potential plays. Long-distance migration may contribute to the formation of additional plays close to the boundary between the two provinces. With a range of both Mesozoic and Paleozoic plays, this under-explored region may have a significant hydrocarbon potential.


2010 ◽  
Vol 50 (1) ◽  
pp. 287 ◽  
Author(s):  
Chris Uruski ◽  
Eva Reid ◽  
Vaughan Stagpoole ◽  
Rick Herzer ◽  
Angela Griffin ◽  
...  

In early 2009, CGGVeritas, supported by the Crown Minerals Group of New Zealand’s Ministry of Economic Development, undertook a 5,900 km reconnaissance 2D seismic survey of the Reinga Basin, which is located to the northwest of the Northland Peninsula and Basin, New Zealand. Although very little data previously existed across this basin apart from low-fold reconnaissance seismic data, it was suspected of being an extension of the Northland Basin and to contain a thick sedimentary succession. It was thought to have formed as a rift basin near the Gondwana margin and to have been inverted during Neogene evolution of the present plate boundary. This paper is the result of the first interpretation of this new, high-quality data set. It confirms the presence of the basin and its sedimentary succession. Up to 9,000 m of sedimentary fill is imaged. The presence of coaly early rift packages and extensions of the Waipawa Formation black marine shale suggest that the basin contains voluminous source rocks. The basin appears to be more deformed in the northwest where large inversion structures are imaged. The northeastern margin is underlain by an extension of the Northland Allochthon which was obducted onto the New Zealand margin during initiation of the present plate boundary around 25 million years ago (Ma). The basin may also have been affected by strike-slip faulting associated with the Vening-Meinesz fracture zone, which developed during the Miocene. Several volcanic bodies are recognised, but in contrast to the adjacent Northland Basin where many large Miocene shield volcanos erupted, volcanic extrusions are rare in the Reinga region. Thermal modelling suggests that the basal source rocks are mature and expelling hydrocarbons and many direct hydrocarbon anomalies are present. Large trapping structures are apparent throughout the basin and even at this early stage of knowledge it appears that the region may have significant hydrocarbon potential. This paper will discuss the evolution of the basin in the regional tectonic context and summarise its petroleum prospectivity.


2011 ◽  
Vol 51 (1) ◽  
pp. 549 ◽  
Author(s):  
Chris Uruski

Around the end of the twentieth century, awareness grew that, in addition to the Taranaki Basin, other unexplored basins in New Zealand’s large exclusive economic zone (EEZ) and extended continental shelf (ECS) may contain petroleum. GNS Science initiated a program to assess the prospectivity of more than 1 million square kilometres of sedimentary basins in New Zealand’s marine territories. The first project in 2001 acquired, with TGS-NOPEC, a 6,200 km reconnaissance 2D seismic survey in deep-water Taranaki. This showed a large Late Cretaceous delta built out into a northwest-trending basin above a thick succession of older rocks. Many deltas around the world are petroleum provinces and the new data showed that the deep-water part of Taranaki Basin may also be prospective. Since the 2001 survey a further 9,000 km of infill 2D seismic data has been acquired and exploration continues. The New Zealand government recognised the potential of its frontier basins and, in 2005 Crown Minerals acquired a 2D survey in the East Coast Basin, North Island. This was followed by surveys in the Great South, Raukumara and Reinga basins. Petroleum Exploration Permits were awarded in most of these and licence rounds in the Northland/Reinga Basin closed recently. New data have since been acquired from the Pegasus, Great South and Canterbury basins. The New Zealand government, through Crown Minerals, funds all or part of a survey. GNS Science interprets the new data set and the data along with reports are packaged for free dissemination prior to a licensing round. The strategy has worked well, as indicated by the entry of ExxonMobil, OMV and Petrobras into New Zealand. Anadarko, another new entry, farmed into the previously licensed Canterbury and deep-water Taranaki basins. One of the main results of the surveys has been to show that geology and prospectivity of New Zealand’s frontier basins may be similar to eastern Australia, as older apparently unmetamophosed successions are preserved. By extrapolating from the results in the Taranaki Basin, ultimate prospectivity is likely to be a resource of some tens of billions of barrels of oil equivalent. New Zealand’s largely submerged continent may yield continent-sized resources.


Sign in / Sign up

Export Citation Format

Share Document