We examined how N supply affected plant growth and N uptake, allocation and leaching losses from a fine sandy soil with four Citrus rootstock species. Seedlings of `Cleopatra' mandarin (Citrus reticulata Blanco) and `Swingle' citrumelo (C. paradisi × P. trifoliata) were grown in a glasshouse in 2.3-liter pots of Candler fine sand and fertilized weekly with a complete nutrient solution containing 200 mg N/liter (20 mg N/week). A single application of 15NH415NO3(17.8% atom excess 15N) was substituted for a normal weekly N application when the seedlings were 22 weeks old (day O). Six replicate plants of each species were harvested at 0.5, 1.5, 3.5, 7, 11, and 30 days after 15N application. In a second experiment, NH4 NO3 was supplied at 18,53, and 105 mg N/week to 14-week-old `Volkamer' lemon (C. volkameriana Ten. & Pasq.) and sour orange (C. aurantium L.) seedlings in a complete nutrient solution for 8 weeks. A single application of 15NH415NO3 (23.0% 15N) was substituted at 22 weeks (day 0), as in the first experiment, and seedlings harvested 3,7, and 31 days after 15N application. Nitrogen uptake and partitioning were similar among species within each rate, but were strongly influenced by total N supply and the N demand by new growth. There was no 15N retranslocation to new tissue at the highest (105 mg N/week) rate, but N supplies below this rate limited plant growth without short-term 15N reallocation from other tissues. Leaf N concentration increased linearly with N supply up to the highest rate, while leaf chlorophyll concentration did not increase above that at 53 mg N/week. Photosynthetic CO2 assimilation was not limited by N in this study; leaf N concentration exceeded 100 mmol·m-2 in all treatments. Thus, differences in net productivity at the higher N rates appeared to be a function of increased leaf area, but not of leaf N concentration. Hence, N use efficiency decreased significantly over the range of N supply, whether expressed either on a gas-exchange or dry weight basis. Mean plant 15N uptake efficiencies after 31 days decreased from 60% to 47% of the 15N applied at the 18,20, and 53 mg N/week rates to less than 33% at the 105 mg N/week rate. Leaching losses increased with N rate, with plant growth rates and the subsequent N requirements of these Citrus species interacting with residual soil N and potential leaching loss.