scholarly journals Detection of deep stratospheric intrusions by cosmogenic 35S

2016 ◽  
Vol 113 (40) ◽  
pp. 11131-11136 ◽  
Author(s):  
Mang Lin ◽  
Lin Su ◽  
Robina Shaheen ◽  
Jimmy C. H. Fung ◽  
Mark H. Thiemens

The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m−3; ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level.

2021 ◽  
Vol 880 (1) ◽  
pp. 012004
Author(s):  
H Mahidin ◽  
M T Latif ◽  
A Hamdan ◽  
J Salleh ◽  
D Dominick ◽  
...  

Abstract Sarawak Region of Malaysia is currently experiencing a high demand for capital needs such as transformation forest to plantations, economic development, and improving transportation systems. Those land cover changes will increase primary pollutant emissions and trigger surface O3 formation. Surface O3 is a secondary pollutant and a significant greenhouse gas contributing to climate change and declining air quality. In this study, variations in surface O3 concentrations at urban and suburban sites in Sarawak were explored using the Malaysian Department of Environment data spanning a two-year cycle (2018-2019). The primary aim of this study is to ascertain the variation of surface O3 concentrations reported at four monitoring stations in Sarawak, namely Kuching (SQ1) (Urban), Sibu (SQ2) (Suburban), Bintulu (SQ3) (Suburban), and Miri (SQ4) (Suburban). The study also analysed the relationship between O3 distribution and nitrogen oxides (NO and NO2). The findings showed that O3 concentrations observed in the region during the study period were lower than the maximum permissible value of 100 ppbv suggested by the Malaysian Ambient Air Quality Standard (2020). SQ4 (Miri) at suburban sites recorded the highest average surface O3 concentrations with an hourly average and daily maximum O3 concentration of 15.7 and 89.5 ppbv, respectively. Temperatures, UV exposure, and wind speed all impact the concentration of surface O3 in Sarawak. In all stations, concentrations of O3 were inversely linked with NO, NO2, and relative humidity (RH). This research will assist the relevant agency in forecast, monitor, and mitigate the level of O3 in the ambient environment, especially in the Sarawak Region.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Tanja Bien ◽  
Detlev Helmig

In 2016, the Denver Metro Area (DMA)/Northern Colorado Front Range (NCFR) was reclassified from a Marginal to a Moderate O3 Non-Attainment Area due to the prevalence of high summer ozone (O3) occurrences. Hourly surface O3 data collected during 2000–2015 from a total of 80 monitoring sites in the State of Colorado were investigated for geographical features in O3 behavior and O3 changes over time. We particularly focus on summer O3 (June, July, August), which is the time when most exceedances of the O3 National Ambient Air Quality Standard (NAAQS) have been recorded. Variables investigated include the statistical (5th, 50th (median), and 95th percentile) distribution of O3 mixing ratios, diurnal amplitudes, and their trends. Trend analyses were conducted for 20 site records that had at least ten years of data. The majority of Colorado ozone monitoring sites show an increase of the 5th (16 total; 11 of these are statistically significant (p-value ≤ 0.05) trends) and 50th (15 total; 4 statistically significant trends) percentile values. Changes for the 95th percentile values were smaller and less consistent. One site showed a statistically significant declining trend, and one site an increasing trend; the majority of other sites had slightly negative, albeit not statistically significant declining O3. Ozone changes at the two highest elevations sites (>2500 m asl) are all negative, contrasting increasing O3 at U.S. West Coast sites. NCFR urban sites do not show the rate of decreasing higher percentile O3 as seen for the majority of urban areas across the U.S. during the past 1–2 decades. The amplitudes of diurnal O3 cycles were studied as a proxy for nitrogen oxides (NOx) emissions and the diurnal O3 production chemistry. The majority of sites show a decrease in the median summer O3 diurnal amplitude (19 total/10 statistically significant). This is mostly driven by the increase in nighttime O3 minima, which is most likely a sign for a declining rate of nighttime O3 loss from titration with nitric oxide (NO), indicating a change in O3 behavior from declining NOx emissions. Since median and upper percentile surface O3 values in the DMA have not declined at the rates seen in other western U.S. regions, thus far the reduction in NOx has had a more pronounced effect on the lower percentile O3 distribution than on high O3 occurrences that primarily determine air quality. An assessment of the influence of oil and gas emissions on Colorado, and in particular DMA O3, is hampered by the sparsity of monitoring within oil and gas basins. Continuous, long-term, high quality, and co-located O3, NOx, and VOC monitoring are recommended for elucidating the geographical heterogeneity of O3 precursors, their changing emissions, and for evaluation of the effectiveness of O3 air quality regulations.


Author(s):  
Wenjun Duan ◽  
Cheng Wang ◽  
Nancai Pei ◽  
Chang Zhang ◽  
Lin Gu ◽  
...  

Abstract: Research Highlights: This study is among the first to investigate ozone levels in urban forests in China. It establishes that urban forest air quality in Yuanshan Forest Park, Shenzhen, is suitable for recreational activities and identifies spatial, seasonal, and diurnal O3 patterns and relationships with micrometeorological parameters, suggesting the possibility of manipulating relevant forest characteristics to reduce O3 levels. Background and Objectives: An understanding of O3 levels of urban forest environments is needed to assess potential effects on human health and recreational activities. Such studies in China are scarce. This study investigated urban forest O3 levels to improve understanding and support residents engaging in forest recreational activities. Materials and Methods: We monitored O3 levels in 2015–2016 for three urban forests representing common habitats (foothill, valley, and ridge) in Yuanshan Forest Park, Shenzhen, and for an adjacent square. Results: The overall mean daily and daily maximum 8-h mean (MDA8) O3 concentrations were highest for the ridge forest and lowest for the valley forest. Each forest’s O3 concentrations were highest in summer. Diurnally, forest O3 concentrations peaked between 13:00 and 17:00 and reached a minimum between 03:00 and 09:00. The correlation between forest O3 concentrations and air temperature (AT) was strongly positive in summer and autumn but negative in spring. In each season, O3 concentration was negatively correlated with relative humidity (RH). No MDA8 or hourly O3 concentrations in the forests exceeded National Ambient Air Quality Standard Grade I thresholds (100 and 160 μg m−3, respectively). Conclusions: O3 accumulation is present in ridge urban forest in all seasons. Foothill and valley urban forests have better air quality than ridge forestation. Urban forest air quality is better in spring and autumn than in summer and is better from night-time to early morning than from noon to afternoon.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Marc L. Mansfield ◽  
Seth N. Lyman

High concentrations of ground-level ozone have been observed during wintertime in the Uinta Basin of western Utah, USA, beginning in 2010. We analyze existing ozone and ozone precursor concentration data from 38 sites over 11 winter seasons and conclude that there has been a statistically significant (p < 0.02) decline in ozone concentration over the previous decade. Daily exceedances of the National Ambient Air Quality Standard for ozone (70 ppb) have been trending downward at the rate of nearly four per year. Ozone and NOx concentrations have been trending downward at the rates of about 3 and 0.3 ppb per year, respectively. Concentrations of organics in 2018 were at about 30% of their values in 2012 or 2013. Several markers, annual ozone exceedance counts and median ozone and NOx concentrations, were at their largest values in the period 2010 to 2013 and have never recovered since then. We attribute the decline to (1) weakening global demand for oil and natural gas and (2) more stringent pollution regulations and controls, both of which have occurred over the previous decade. We also see evidence of ozone titration when snow cover is absent.


2010 ◽  
Vol 3 (4) ◽  
pp. 2291-2314
Author(s):  
G. Sarwar ◽  
K. W. Appel ◽  
A. G. Carlton ◽  
R. Mathur ◽  
K. Schere ◽  
...  

Abstract. A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone mixing ratios. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. Sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While changes in total fine particulate mass are small, predictions of in-cloud SOA increase substantially.


2018 ◽  
Author(s):  
Marina Astitha ◽  
Ioannis Kioutsoukis ◽  
Ghezae Araya Fisseha ◽  
Roberto Bianconi ◽  
Johannes Bieser ◽  
...  

Abstract. This study evaluates simulated vertical ozone profiles produced in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) against ozonesonde observations in North America for the year 2010. Four research groups from the United States (U.S.) and Europe have provided ozone vertical profiles to conduct this analysis. Because some of the modeling systems differ in their meteorological drivers, wind speed and temperature are also included in the analysis. In addition to the seasonal ozone profile evaluation for 2010, we also analyze chemically inert tracers designed to track the influence of lateral boundary conditions on simulated ozone profiles within the modeling domain. Finally, cases of stratospheric ozone intrusions during May–June 2010 are investigated by analyzing ozonesonde measurements and the corresponding model simulations at Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) experiment sites in the western United States. The evaluation of the seasonal ozone profiles reveals that at a majority of the stations, ozone mixing ratios are under-estimated in the 1–6 km range. The seasonal change noted in the errors follows the one seen in the variance of ozone mixing ratios, with the majority of the models exhibiting less variability than the observations. The analysis of chemically inert tracers highlights the importance of lateral boundary conditions up to 250 hPa for the lower tropospheric ozone mixing ratios (0–2 km). Finally, for the stratospheric intrusions, the models are generally able to reproduce the location and timing of most intrusions but underestimate the magnitude of the maximum mixing ratios in the 2–6 km range and overestimate ozone up to the first km possibly due to marine air influences that are not accurately described by the models. The choice of meteorological driver appears to be a greater predictor of model skill in this altitude range than the choice of air quality model.


2013 ◽  
Vol 807-809 ◽  
pp. 20-23 ◽  
Author(s):  
Tao Sheng ◽  
Jian Wu Shi ◽  
Sen Lin Tian ◽  
Li Mei Bi ◽  
Hao Deng ◽  
...  

According to the information of air quality which published by the urban air quality real-time publishing platform, the concentration characteristics of PM10 and PM2.5 were studied in Kunming (KM), Changsha (CS), Hangzhou (HZ), Shanghai (SH), Harbin (HEB), Beijing (BJ), Wuhan (WH) and Guangzhou (GZ). The results show that the concentrations of PM10 and PM2.5 exceeded the Ambient Air Quality Standard (GB3095-2012) in varying degrees in March, 2013. The concentrations of PM10 in Wuhan is the highest, reached 164μg/m3, exceeded the standard by 9.3%; the concentrations of PM2.5 is much higher in Wuhan, Changsha and Beijing, the average concentrations were 96μg/m3, 103μg/m3 and 110μg/m3, exceeded the standard by 28.0%, 37.3% and 46.7% respectively. The correlation of PM10 with PM2.5 in most of these cities was good in March. The correlation analysis of pollutant with meteorological factor in Hangzhou, Shanghai, Beijing and Guangzhou was also studied, the results show that the concentrations of PM10 and PM2.5 are weakly positive correlation with temperature in the four cities, negative correlation with relative humidity without Beijing, and negative correlation with wind speed.


Sign in / Sign up

Export Citation Format

Share Document