An Experimental Study of Physical, Mechanical, and Thermal Properties of Rattan-Bamboo Fiber Reinforced Hybrid Polyester Laminated Composite

2020 ◽  
pp. 1-15
Author(s):  
Md. Rezwan Munshi ◽  
S. Sharar Alam ◽  
M. Merajul Haque ◽  
Abu Shufian ◽  
Mohammad Rejaul Haque ◽  
...  
2018 ◽  
Vol 59 (s2) ◽  
pp. E247-E260 ◽  
Author(s):  
Haibo Long ◽  
Zhiqiang Wu ◽  
Qianqian Dong ◽  
Yuting Shen ◽  
Wuyi Zhou ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jantrawan Pumchusak ◽  
Nonthawat Thajina ◽  
Watcharakorn Keawsujai ◽  
Pattarakamon Chaiwan

This work aims to explore the effect of organo-modified montmorillonite nanoclay (O-MMT) on the mechanical, thermo-mechanical, and thermal properties of carbon fiber-reinforced phenolic composites (CFRP). CFRP at variable O-MMT contents (from 0 to 2.5 wt%) were prepared. The addition of 1.5 wt% O-MMT was found to give the heat resistant polymer composite optimum properties. Compared to the CFRP, the CFRP with 1.5 wt% O-MMT provided a higher tensile strength of 64 MPa (+20%), higher impact strength of 49 kJ/m2 (+51%), but a little lower bending strength of 162 MPa (−1%). The composite showed a 64% higher storage modulus at 30 °C of 6.4 GPa. It also could reserve its high modulus up to 145 °C. Moreover, it had a higher heat deflection temperature of 152 °C (+1%) and a higher thermal degradation temperature of 630 °C. This composite could maintain its mechanical properties at high temperature and was a good candidate for heat resistant material.


2021 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Farzin Azimpour-Shishevan ◽  
Hamit Akbulut ◽  
M.A. Mohtadi-Bonab

In the current research, the effect of cyclic temperature variation on the mechanical and thermal properties of woven carbon-fiber-reinforced polymer (CFRP) composites was investigated. To this, carbon fiber textiles in twill 2/2 pattern were used as reinforced phase in epoxy, and CFRPs were fabricated by vacuum-assisted resin-infusion molding (VARIM) method. Thermal cycling process was carried out between −40 and +120 °C for 20, 40, 60 and 80 cycles, in order to evaluate the effect of thermal cycling on mechanical and thermal properties of CFRP specimens. In this regard, tensile, bending and short beam shear (SBS) experiments were carried out, to obtain modulus of elasticity, tensile strength, flexural modulus, flexural strength and inter-laminar shear strength (ILSS) at room temperature (RT), and then thermal treated composites were compared. A dynamic mechanical analysis (DMA) test was carried out to obtain thermal properties, and viscoelastic properties, such as storage modulus (E’), loss modulus (E”) and loss factors (tan δ), were evaluated. It was observed that the characteristics of composites were affected by thermal cycling due to post-curing at a high temperature. This process worked to crosslink and improve the composite behavior or degrade it due to the different coefficients of thermal expansion (CTEs) of composite components. The response of composites to the thermal cycling process was determined by the interaction of these phenomena. Based on SEM observations, the delamination, fiber pull-out and bundle breakage were the dominant fracture modes in tensile-tested specimens.


2019 ◽  
Vol 28 (8-9) ◽  
pp. 609-622
Author(s):  
Dinesh ◽  
Sanjay Palsule

Recycled bamboo fiber-reinforced chemically functionalized ethylene propylene rubber (R-BMBF/CF-EPR) composites have been developed by extrusion and injection molding by Palsule process without any fiber treatment and without compatibilizer. Scanning electron microscopy (SEM) shows good R-BMBF/CF-EPR interfacial adhesion in the composites, and Fourier transform infrared (FTIR) confirms that esterification and the hydrogen bonding between functional groups of CF-EPR and of R-BMBF impart this interfacial adhesion. Mechanical, dynamic mechanical, and thermal properties and the effect of water absorption on tensile properties of the composites have been evaluated. Tensile properties of the 15/85, 25/75, and 35/65 R-BMBF/CF-EPR composites are higher than those of CF-EPR and increase with increasing R-BMBF in the composites. Storage modulus and loss modulus of the composites increase with increasing fiber contents in them but decrease with increasing temperature. Water-absorbed wet composites show thickness swelling and reduced tensile properties relative to the respective dry composites but higher tensile properties than the dry CF-EPR. Thermal stability and degradation of the composites is also reported.


Sign in / Sign up

Export Citation Format

Share Document