scholarly journals Remote sensing based forest canopy opening and their spatial representation

Author(s):  
Tania Fernández Vargas ◽  
Irma Trejo Vázquez ◽  
Raúl Aguirre Gómez
Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Xiaolan Huang ◽  
Weicheng Wu ◽  
Tingting Shen ◽  
Lifeng Xie ◽  
Yaozu Qin ◽  
...  

This research was focused on estimation of tree canopy cover (CC) by multiscale remote sensing in south China. The key aim is to establish the relationship between CC and woody NDVI (NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC measurements, this research used Google Earth as a complementary source to measure CC. In total, 63 sample plots of CC were created, among which 45 were applied for modeling and the remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for regional CC estimation. An independent group of 24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity and is suitable for large-scale estimation of CC using high-resolution data.


2021 ◽  
Vol 13 (14) ◽  
pp. 7539
Author(s):  
Zaw Naing Tun ◽  
Paul Dargusch ◽  
DJ McMoran ◽  
Clive McAlpine ◽  
Genia Hill

Myanmar is one of the most forested countries of mainland Southeast Asia and is a globally important biodiversity hotspot. However, forest cover has declined from 58% in 1990 to 44% in 2015. The aim of this paper was to understand the patterns and drivers of deforestation and forest degradation in Myanmar since 2005, and to identify possible policy interventions for improving Myanmar’s forest management. Remote sensing derived land cover maps of 2005, 2010 and 2015 were accessed from the Forest Department, Myanmar. Post-classification change detection analysis and cross tabulation were completed using spatial analyst and map algebra tools in ArcGIS (10.6) software. The results showed the overall annual rate of forest cover loss was 2.58% between 2005 and 2010, but declined to 0.97% between 2010 and 2015. The change detection analysis showed that deforestation in Myanmar occurred mainly through the degradation of forest canopy associated with logging rather than forest clearing. We propose that strengthening the protected area system in Myanmar, and community participation in forest conservation and management. There needs to be a reduction in centralisation of forestry management by sharing responsibilities with local governments and the movement away from corruption in the timber trading industry through the formation of local-based small and medium enterprises. We also recommend the development of a forest monitoring program using advanced remote sensing and GIS technologies.


1988 ◽  
Vol 24 (1) ◽  
pp. 85-108 ◽  
Author(s):  
David L. Peterson ◽  
John D. Aber ◽  
Pamela A. Matson ◽  
Don H. Card ◽  
Nancy Swanberg ◽  
...  
Keyword(s):  

2019 ◽  
Vol 40 (4) ◽  
pp. 403-423 ◽  
Author(s):  
Gabriela Banon ◽  
Eduardo Arraut ◽  
Francisco Villamarín ◽  
Boris Marioni ◽  
Gabriel Moulatlet ◽  
...  

Abstract Crocodilians usually remain inside or near their nests during most vulnerable life stages (as eggs, neonates and reproductive females). Thus, protection of nesting sites is one of the most appropriate conservation actions for these species. Nesting sites are often found across areas with difficult access, making remote sensing a valuable tool used to derive environmental variables for characterisation of nesting habitats. In this study, we (i) review crocodilian nesting habitats worldwide to identify key variables for nesting site distribution: proximity to open-water, open-water stability, vegetation, light, precipitation, salinity, soil properties, temperature, topography, and flooding status, (ii) present a summary of the relative importance of these variables for each crocodilian species, (iii) identify knowledge gaps in the use of remote sensing methods currently used to map potential crocodilian nesting sites, and (iv) provide insight into how these remotely sensed variables can be derived to promote research on crocodilian ecology and conservation. We show that few studies have used remote sensing and that the range of images and methods used comprises a tiny fraction of what is available at little to no cost. Finally, we discuss how the combined use of remote sensing methods – optical, radar, and laser – may help overcome difficulties routinely faced in nest mapping (e.g., cloud cover, flooding beneath the forest canopy, or complicated relief) in a relevant way to crocodilians and to other semiaquatic vertebrates in different environments.


2020 ◽  
Vol 12 (11) ◽  
pp. 1820
Author(s):  
Raoul Blackman ◽  
Fei Yuan

Urban forests provide ecosystem services; tree canopy cover is the basic quantification of ecosystem services. Ground assessment of the urban forest is limited; with continued refinement, remote sensing can become an essential tool for analyzing the urban forest. This study addresses three research questions that are essential for urban forest management using remote sensing: (1) Can object-based image analysis (OBIA) and non-image classification methods (such as random point-based evaluation) accurately determine urban canopy coverage using high-spatial-resolution aerial images? (2) Is it possible to assess the impact of natural disturbances in addition to other factors (such as urban development) on urban canopy changes in the classification map created by OBIA? (3) How can we use Light Detection and Ranging (LiDAR) data and technology to extract urban canopy metrics accurately and effectively? The urban forest canopy area and location within the City of St Peter, Minnesota (MN) boundary between 1938 and 2019 were defined using both OBIA and random-point-based methods with high-spatial-resolution aerial images. Impacts of natural disasters, such as the 1998 tornado and tree diseases, on the urban canopy cover area, were examined. Finally, LiDAR data was used to determine the height, density, crown area, diameter, and volume of the urban forest canopy. Both OBIA and random-point methods gave accurate results of canopy coverages. The OBIA is relatively more time-consuming and requires specialist knowledge, whereas the random-point-based method only shows the total coverage of the classes without locational information. Canopy change caused by tornado was discernible in the canopy OBIA-based classification maps while the change due to diseases was undetectable. To accurately exact urban canopy metrics besides tree locations, dense LiDAR point cloud data collected at the leaf-on season as well as algorithms or software developed specifically for urban forest analysis using LiDAR data are needed.


Sign in / Sign up

Export Citation Format

Share Document