scholarly journals EXPERIMENTS ON TOLERATION OF TEMPERATURE BY DROSOPHILA

1923 ◽  
Vol 6 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Harold H. Plough ◽  
Maurice B. Strauss

1. Most wild stocks of Drosophila melanogaster can be bred indefinitely on banana agar at a temperature of 31°C. There is no relation between the geographical origin of these stocks and their ability to tolerate this temperature. 2. A single wild stock has been found which will breed for only one generation at temperatures above 29°C. The offspring hatched at 31°C. will breed normally at 24°C. This difference from other wild stocks is apparently genetic, but its genetic basis has not yet been worked out. 3. The mutant stocks of D. melanogaster tested by us will breed for only one generation at 31°C. and their offspring at this temperature are also fertile at 24°C. This condition is apparently a physiological effect of the presence of any of the mutant genes in a homozygous condition. 4. Similar tests indicate that wild stocks of D. virilis and Chymomyza procnemis will breed at 31°C., while D. simulans, D. immigrans, and D. funebris will not. The last two species are northern forms not commonly found in the tropics. 5. Both male and female flies from mutant stocks hatched at 31°C. produce offspring at this temperature if mated to flies hatched at 24°C. Their germ cells are therefore capable of development, and the cause of their failure to develop at 31°C. when inbred must lie either in the failure of the germ cells to reach each other or in the fertilization process itself.

2021 ◽  
Author(s):  
Manas Geeta Arun ◽  
Tejinder Singh Chechi ◽  
Rakesh Meena ◽  
Shradha Dattaraya Bhosle ◽  
Srishti ◽  
...  

Divergence in the evolutionary interests of males and females leads to sexual conflict. Traditionally, sexual conflict has been classified into two types: inter-locus sexual conflict (IeSC) and intra-locus sexual conflict (IaSC). IeSC is modeled as a conflict over outcomes of intersexual reproductive interactions mediated by loci that are sex-limited in their effects. IaSC is thought to be a product of selection acting in opposite directions in males and females on traits with a common underlying genetic basis. While in their canonical formalisms IaSC and IeSC are mutually exclusive, there is growing support for the idea that the two may interact. Empirical evidence for such interactions, however, is limited. Here, we investigated the interaction between IeSC and IaSC in Drosophila melanogaster. Using hemiclonal analysis, we sampled 39 hemigenomes from a laboratory-adapted population of D. melanogaster. We measured the contribution of each hemigenome to adult male and female fitness at three different intensities of IeSC, obtained by varying the operational sex-ratio. Subsequently, we estimated the intensity of IaSC at each sex-ratio by calculating the intersexual genetic correlation for fitness and the proportion of sexually antagonistic fitness-variation. Our results indicate a statistically non-significant trend suggesting that increasing the strength of IeSC ameliorates IaSC in the population.


Development ◽  
1957 ◽  
Vol 5 (4) ◽  
pp. 396-403
Author(s):  
Beatrice Mintz

The pleiotropic mutant genes W and Wv are alleles of w in the mouse, and produce anaemia, absence of fur pigmentation, and sterility in homozygotes (review by Russell, 1954). Germ-cells of both male and female homozygotes are lacking or drastically reduced in numbers at birth, the genotypes being identifiable through the concurrent anaemia. The developmental basis for this sterility was therefore sought in embryonic life and has been described (Mintz & Russell, 1955, 1957). Recently, a new mutation, Wj, with comparable effects in the homozygote, arose at the same locus. Evidence that it is an allele of the W-series, but different from W or Wv, will be presented elsewhere (Russell, Lawson, & Schabtach, in preparation). In the present report, the early abnormalities characterizing WjWj will be traced and compared with those produced by the other mutant alleles, and will be considered in relation to the problems of germ-cell origin and pleiotropism. A preliminary note (Mintz, 1957) has appeared on the study.


Genetics ◽  
1977 ◽  
Vol 87 (1) ◽  
pp. 67-81
Author(s):  
Rudolf Büchi

ABSTRACT Male and female Drosophila melanogaster with special sex chromosome or special autosome constitutions were fed with the mutagenic chemicals Trenimon (2,3,5-trisethyleneimino-1,4-benzoquinone) and PDMT (1-phenyl-3, 3-dimethyltriazene) and with the toxic substance Na2PO3F (sodium monofluorophosphate). The frequency of dominant lethality was recorded among the progeny. The results clearly show that dominant lethality is dose dependent for Trenimon- or PDMT-treated chromosomes in mature sperm and mature oocytes, and an increased amount of chromosomal material per nucleus yields an enhanced lethality. In contrast, a pure toxic effect of Na2PO3F on mature oocytes was demonstrated with one type of female.—With the stocks of Drosophila used, it is possible to distinguish between mutagenic and toxic effects of chemicals on the germ cells. Therefore, dominant lethality can be used as a simple and quick screening test for chemical mutagens.


1981 ◽  
Vol 117 (2) ◽  
pp. 133-146 ◽  
Author(s):  
Donald W. Pyle ◽  
Mark H. Gromko

Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Lucas Sánchez ◽  
Pedro Santamaria

Abstract This article reports the breaking of ethological barriers through the constitution of soma-germ line chimeras between species of the melanogaster subgroup of Drosophila, which are ethologically isolated. Female Drosophila yakuba and D. teissieri germ cells in a D. melanogaster ovary produced functional oocytes that, when fertilized by D. melanogaster sperm, gave rise to sterile yakuba-melanogaster andteissieri-melanogaster male and female hybrids. However, the erecta-melanogaster and orena-melanogaster hybrids were lethal, since female D. erecta and D. orena germ cells in a D. melanogaster ovary failed to form oocytes with the capacity to develop normally. This failure appears to be caused by an altered interaction between the melanogaster soma and the erecta and orena germ lines. Germ cells of D. teissieri and D. orena in a D. melanogaster testis produced motile sperm that was not stored in D. melanogaster females. This might be due to incompatibility between the teissieri and orena sperm and the melanogaster seminal fluid. A morphological analysis of the terminalia of yakuba-melanogaster and teissieri-melanogaster hybrids was performed. The effect on the terminalia of teissieri-melanogaster hybrids of a mutation in doublesex, a regulatory gene that controls the development of the terminalia, was also investigated.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Sign in / Sign up

Export Citation Format

Share Document