Covariance matrix transformation method in all-earth integrated navigation considering coordinate frame conversion
Abstract In the exploration of polar region, navigation is one of the most important issues to be resolved. To avoid the limitations of single navigation coordinate frame, the navigation systems usually use different navigation coordinate frames in polar and nonpolar region, such as the north-oriented geographic frame and the grid frame. However, the error states and covariance matrix are related with the definition of navigation coordinate frame, since the coordinate frame conversion will cause the integrated navigation Kalman filter overshoot and error discontinuity. To solve this problem, the transformation relationship of error states defined in different frames is deduced, whereby the covariance matrix transformation relationship is also analyzed. On this basis, covariance transformation-based the open-loop and the closed-loop Kalman filter integrated navigation algorithms are proposed. The effectiveness of algorithms is verified by flight tests with rotational strapdown inertial navigation system (RSINS)/global navigation satellite system (GNSS) integrated navigation system.