Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied initial phases
Abstract Within the frame of classical electrodynamics, nonlinear Thomson scattering by an electron of a tightly focused circularly polarized laser has been investigated. The electron motion and spatial radiation characteristics are studied numerically when the electron is initially stationary. The numerical analysis shows that the direction of the maximum radiation power is in linear with the initial phase of the laser pulse. Furthermore, we generalize the rule to the case of arbitrary beam waist, peak amplitude and pulse width. Then the radiation distribution is studied when the electron propagates in the opposite sense with respect to the laser pulse and the linear relationship still holds true. Last we pointed out the limitation of the single electron model in this paper.