scholarly journals High-speed image processing systems in non-destructive testing

2017 ◽  
Vol 881 ◽  
pp. 012029 ◽  
Author(s):  
D V Shashev ◽  
S V Shidlovskiy
2014 ◽  
Vol 70 (3) ◽  
Author(s):  
Nasarudin Ahmad ◽  
Ruzairi Abdul Rahim ◽  
Herlina Abdul Rahim ◽  
Mohd Hafiz Fazlul Rahiman

Although the technique of using ultrasound has reached maturity by given the extent of the development of sensors, but the use of the various areas still can be explore. Many types of ultrasonic sensors are still at conventional in use especially for measurement equipment in the industry. With the advancement of signal processing techniques, high-speed computing, and the latest techniques in image formation based Non-destructive testing (NDT) methods, the usage of ultrasound in concrete NDT testing is very extensive because the technique is very simple and should not damage the concrete structure to be investigated. Many of the parameters need to be tested using ultrasound techniques to concrete can be realized. Starting with the initial process for of concrete mixing until the concrete matured to the age of century old. Various tests are available to test a variety of non-destructive of concrete completely, in which there is no damage to the concrete, through those where the concrete surface is damaged a bit, to partially destructive testing, such as core tests and insertion and pull-off test, which surface to be repaired after the test. Testing parameter features that can be evaluated using non-destructive testing and destructive testing of some rather large and include basic parameters such as density, elastic modulus and strength and surface hardness and surface absorption, and reinforcement location, size and distance from the surface. In some cases it is also possible to check the quality of the workmanship and structural integrity of the ability to detect voids, cracks and delamination. A review of NDT using ultrasound on concrete are presented in this paper to highlight the important aspect to consider when one to consider the application and development of ultrasound testing on concrete by considering ultrasound signal capturing, processing and presenting.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 315 ◽  
Author(s):  
Kumar Anubhav Tiwari ◽  
Renaldas Raisutis ◽  
Olgirdas Tumsys ◽  
Armantas Ostreika ◽  
Kestutis Jankauskas ◽  
...  

The estimation of the size and location of defects in multi-layered composite structures by ultrasonic non-destructive testing using guided waves has attracted the attention of researchers for the last few decades. Although extensive signal processing techniques are available, there are only a few studies available based on image processing of the ultrasonic B-scan image to extract the size and location of defects via the process of ultrasonic non-destructive testing. This work presents an image processing technique for ultrasonic B-scan images to improve the estimation of the location and size of disbond-type defects in glass fiber-reinforced plastic materials with 25-mm and 51-mm diameters. The sample is a segment of a wind turbine blade with a variable thickness ranging from 3 to 24 mm. The experiment is performed by using a low-frequency ultrasonic system and a pair of contact-type piezoceramic transducers kept apart by a 50-mm distance and embedded on a moving mechanical panel. The B-scan image acquired by the ultrasonic pitch-catch technique is denoised by utilizing features of two-dimensional discrete wavelet transform. Thereafter, the normalized pixel densities are compared along the scanned distance on the region of interest of the image, and a −3 dB threshold is applied to the locations and sizes the defects in the spatial domain.


2014 ◽  
Vol 14 (1) ◽  
pp. 161-171
Author(s):  
Mythili Thirugnanam ◽  
S. Margret Anouncia

Abstract At present, image processing concepts are widely used in different fields, such as remote sensing, communication, medical imaging, forensics and industrial inspection. Image segmentation is one of the key processes in image processing key stages. Segmentation is a process of extracting various features of the image which can be merged or split to build the object of interest, on which image analysis and interpretation can be performed. Many researchers have proposed various segmentation algorithms to extract the region of interest from an image in various domains. Each segmentation algorithm has its own pros and cons based on the nature of the image and its quality. Especially, extracting a region of interest from a gray scale image is incredibly complex compared to colour images. This paper attempts to perform a study of various widely used segmentation techniques in gray scale images, mostly in industrial radiographic images that would help the process of defects detection in non-destructive testing.


2018 ◽  
Vol 13 (s1) ◽  
pp. 61-72 ◽  
Author(s):  
Jun-Gi Sim

Abstract This paper intends to achieve improved image processing for the clear identification of defects in damaged road pavement structure using infrared thermography non-destructive testing (NDT). To that goal, 4 types of pavement specimen including internal defects were fabricated to exploit the results obtained by heating the specimens by natural light. The results showed that defects located down to a depth of 3 cm could be detected by infrared thermography NDT using the improved image processing method.


Sign in / Sign up

Export Citation Format

Share Document