Ablation studies on YOLOFruit detection algorithm for fruit harvesting robot using deep learning
Abstract Fruit detection algorithm as an integral part of harvesting robot is expected to be robust, accurate, and fast against environmental factors such as occlusion by stem and leaves, uneven illumination, overlapping fruit and many more. For this reason, this paper explored and compared ablation studies on proposed YOLOFruit, YOLOv4, and YOLOv5 detection algorithms. The final selected YOLOFruit algorithm used ResNet43 backbone with Combined activation function for feature extraction, Spatial Pyramid Pooling Network (SPPNet) for detection accuracies, Feature Pyramid Network (FPN) for feature pyramids, Distance Intersection Over Union-Non Maximum Suppression (DIoU-NMS) for detection efficiency and accuracy, and Complete Intersection Over Union (CIoU) loss for faster and better performance. The obtained results showed that the average detection accuracy of YOLOFruit at 86.2% is 1% greater than YOLOv4 at 85.2% and 4.3% higher than YOLOv5 at 81.9%, while the detection time of YOLOFruit at 11.9ms is faster than YOLOv4 at 16.6ms, but not with YOLOv5 at 2.7ms. Hence, the YOLOFruit detection algorithm is highly prospective for better generalization and real-time fruit detection.