scholarly journals In utero exposure to maternal diets containing soy protein isolate, but not genistein alone, protects young adult rat offspring from NMU-induced mammary tumorigenesis

2006 ◽  
Vol 28 (5) ◽  
pp. 1046-1051 ◽  
Author(s):  
Y. Su ◽  
R. R. Eason ◽  
Y. Geng ◽  
S. Till ◽  
T. M. Badger ◽  
...  
Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 571
Author(s):  
Jihye Choi ◽  
Sae Bom Won ◽  
Young Hye Kwon

It has been reported that maternal nutrition determines the offspring’s susceptibility to chronic diseases including cancer. Here, we investigated the effects of maternal diets differing in protein source on diethylnitrosamine (DEN)-induced hepatocarcinogenesis in adult rat offspring. Dams were fed a casein (CAS) diet or a low-isoflavone soy protein isolate (SPI) diet for two weeks before mating and throughout pregnancy and lactation. Offspring were weaned to and fed a chow diet throughout the study. From four weeks of age, hepatocellular carcinomas (HCC) were induced by intraperitoneal injection of DEN once a week for 14 weeks. The SPI/DEN group exhibited higher mortality rate, tumor multiplicity, and HCC incidence compared with the CAS/DEN group. Accordingly, altered cholesterol metabolism and increases in liver damage and angiogenesis were observed in the SPI/DEN group. The SPI/DEN group had a significant induction of the nuclear factor-κB-mediated anti-apoptotic pathway, as measured by increased phosphorylation of IκB kinase β, which may lead to the survival of precancerous hepatocytes. In conclusion, maternal consumption of a low-isoflavone soy protein isolate diet accelerated chemically induced hepatocarcinogenesis in male rat offspring in the present study, suggesting that maternal dietary protein source may be involved in DEN-induced hepatocarcinogenesis in adult offspring.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Sign in / Sign up

Export Citation Format

Share Document