scholarly journals On Twisted Gelfand Pairs Through Commutativity of a Hecke Algebra

Author(s):  
Yotam I Hendel

Abstract For a locally compact, totally disconnected group $G$, a subgroup $H$, and a character $\chi :H \to \mathbb{C}^{\times }$ we define a Hecke algebra ${\mathcal{H}}_\chi$ and explore the connection between commutativity of ${\mathcal{H}}_\chi$ and the $\chi$-Gelfand property of $(G,H)$, that is, the property $\dim _{\mathbb{C}} (\rho ^*)^{(H,\chi ^{-1})} \leq 1$ for every $\rho \in \textrm{Irr}(G)$, the irreducible representations of $G$. We show that the conditions of the Gelfand–Kazhdan criterion imply commutativity of ${\mathcal{H}}_\chi$ and verify in several simple cases that commutativity of ${\mathcal{H}}_\chi$ is equivalent to the $\chi$-Gelfand property of $(G,H)$. We then show that if $G$ is a connected reductive group over a $p$-adic field $F$, and $G/H$ is $F$-spherical, then the cuspidal part of ${\mathcal{H}}_\chi$ is commutative if and only if $(G,H)$ satisfies the $\chi$-Gelfand property with respect to all cuspidal representations ${\rho \in \textrm{Irr}(G)}$. We conclude by showing that if $(G,H)$ satisfies the $\chi$-Gelfand property with respect to all irreducible $(H\backslash G,\chi ^{-1})$-tempered representations of $G$ then ${\mathcal{H}}_\chi$ is commutative.

Author(s):  
DIPENDRA PRASAD ◽  
NILABH SANAT

Let G be a connected split reductive group defined over a finite field [ ]q, and G([ ]q) the group of [ ]q-rational points of G. For each maximal torus T of G defined over [ ]q and a complex linear character θ of T([ ]q), let RGT(θ) be the generalized representation of G([ ]q) defined in [DL]. It can be seen that the conjugacy classes in the Weyl group W of G are in one-to-one correspondence with the conjugacy classes of maximal tori defined over [ ]q in G ([C1, 3·3·3]). Let c be the Coxeter conjugacy class of W, and let Tc be the corresponding maximal torus. Then by [DL] we know that πθ = (−1)nRGTc(θ) (where n is the semisimple rank of G and θ is a character in ‘general position’) is an irreducible cuspidal representation of G([ ]q). The results of this paper generalize the pattern about the dimensions of cuspidal representations of GL(n, [ ]q) as an alternating sum of the dimensions of certain irreducible representations of GL(n, [ ]q) appearing in the space of functions on the flag variety of GL(n, [ ]q) as shown in the table below.


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.


2021 ◽  
Vol 38 (1) ◽  
pp. 223-230
Author(s):  
MIHAIL URSUL ◽  
◽  
JOHN LANTA ◽  

We study in this paper conditions under which nilradicals of totally disconnected locally compact rings are closed. In the paper is given a characterization of locally finite compact rings via identities.


Sign in / Sign up

Export Citation Format

Share Document