scholarly journals Uniformizing the Moduli Stacks of Global G-Shtukas

Author(s):  
E Arasteh Rad ◽  
Urs Hartl

Abstract This is the 2nd in a sequence of articles, in which we explore moduli stacks of global $\mathfrak{G}$-shtukas, the function field analogs for Shimura varieties. Here $\mathfrak{G}$ is a flat affine group scheme of finite type over a smooth projective curve $C$ over a finite field. Global $\mathfrak{G}$-shtukas are generalizations of Drinfeld shtukas and analogs of abelian varieties with additional structure. We prove that the moduli stacks of global $\mathfrak{G}$-shtukas are algebraic Deligne–Mumford stacks separated and locally of finite type. They generalize various moduli spaces used by different authors to prove instances of the Langlands program over function fields. In the 1st article we explained the relation between global $\mathfrak{G}$-shtukas and local ${{\mathbb{P}}}$-shtukas, which are the function field analogs of $p$-divisible groups. Here ${{\mathbb{P}}}$ is the base change of $\mathfrak{G}$ to the complete local ring at a point of $C$. When ${{\mathbb{P}}}$ is smooth with connected reductive generic fiber we proved the existence of Rapoport–Zink spaces for local ${{\mathbb{P}}}$-shtukas. In the present article we use these spaces to (partly) uniformize the moduli stacks of global $\mathfrak{G}$-shtukas for smooth $\mathfrak{G}$ with connected fibers and reductive generic fiber. This is our main result. It has applications to the analog of the Langlands–Rapoport conjecture for our moduli stacks.

Author(s):  
Urs Hartl ◽  
Eva Viehmann

Abstract Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the $\ell $ -adic cohomology of these towers. Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie $\ell $ -adique de ces tours.


2009 ◽  
Vol 61 (1) ◽  
pp. 3-28 ◽  
Author(s):  
Kai Behrend ◽  
Ajneet Dhillon

Abstract.LetXbe a smooth projective geometrically connected curve over a finite field with function fieldK. Let Gbe a connected semisimple group scheme overX. Under certain hypotheses we prove the equality of two numbers associated with G. The first is an arithmetic invariant, its Tamagawa number. The second is a geometric invariant, the number of connected components of the moduli stack of Gtorsors onX. Our results are most useful for studying connected components as much is known about Tamagawa numbers.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Author(s):  
Ulrich Görtz ◽  
Xuhua He ◽  
Michael Rapoport

Abstract We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.


2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


2018 ◽  
Vol 33 (29) ◽  
pp. 1830012 ◽  
Author(s):  
Minhyong Kim

Much of arithmetic geometry is concerned with the study of principal bundles. They occur prominently in the arithmetic of elliptic curves and, more recently, in the study of the Diophantine geometry of curves of higher genus. In particular, the geometry of moduli spaces of principal bundles holds the key to an effective version of Faltings’ theorem on finiteness of rational points on curves of genus at least 2. The study of arithmetic principal bundles includes the study of Galois representations, the structures linking motives to automorphic forms according to the Langlands program. In this paper, we give a brief introduction to the arithmetic geometry of principal bundles with emphasis on some elementary analogies between arithmetic moduli spaces and the constructions of quantum field theory.


2008 ◽  
Vol 17 (2) ◽  
pp. 341-374 ◽  
Author(s):  
Eva Viehmann

2019 ◽  
Vol 2019 (747) ◽  
pp. 175-219 ◽  
Author(s):  
Dulip Piyaratne ◽  
Yukinobu Toda

Abstract In this paper we show that the moduli stacks of Bridgeland semistable objects on smooth projective 3-folds are quasi-proper algebraic stacks of finite type if they satisfy the Bogomolov–Gieseker (BG for short) inequality conjecture proposed by Bayer, Macrì and the second author. The key ingredients are the equivalent form of the BG inequality conjecture and its generalization to arbitrary very weak stability conditions. This result is applied to define Donaldson–Thomas invariants counting Bridgeland semistable objects on smooth projective Calabi–Yau 3-folds satisfying the BG inequality conjecture, for example on étale quotients of abelian 3-folds.


2016 ◽  
Vol 230 ◽  
pp. 18-34 ◽  
Author(s):  
MARCO ANTEI ◽  
MICHEL EMSALEM

Given a relative faithfully flat pointed scheme over the spectrum of a discrete valuation ring $X\rightarrow S$, this paper is motivated by the study of the natural morphism from the fundamental group scheme of the generic fiber $X_{\unicode[STIX]{x1D702}}$ to the generic fiber of the fundamental group scheme of $X$. Given a torsor $T\rightarrow X_{\unicode[STIX]{x1D702}}$ under an affine group scheme $G$ over the generic fiber of $X$, we address the question of finding a model of this torsor over $X$, focusing in particular on the case where $G$ is finite. We provide several answers to this question, showing for instance that, when $X$ is integral and regular of relative dimension 1, such a model exists on some model $X^{\prime }$ of $X_{\unicode[STIX]{x1D702}}$ obtained by performing a finite number of Néron blowups along a closed subset of the special fiber of $X$. Furthermore, we show that when $G$ is étale, then we can find a model of $T\rightarrow X_{\unicode[STIX]{x1D702}}$ under the action of some smooth group scheme. In the first part of the paper, we show that the relative fundamental group scheme of $X$ has an interpretation as the Tannaka Galois group of a Tannakian category constructed starting from the universal torsor.


2001 ◽  
Vol 8 (4) ◽  
pp. 665-668
Author(s):  
E. Ballico

Abstract Let 𝑋 be a smooth projective curve of genus 𝑔 ≥ 2 and 𝑆(𝑟, 𝑑) the moduli scheme of all rank 𝑟 stable vector bundles of degree 𝑑 on 𝑋. Fix an integer 𝑘 with 0 < 𝑘 < 𝑟. H. Lange introduced a natural stratification of 𝑆(𝑟, 𝑑) using the degree of a rank 𝑘 subbundle of any 𝐸 ∈ 𝑆(𝑟, 𝑑) with maximal degree. Every non-dense stratum, say 𝑊(𝑘, 𝑟 – 𝑘, 𝑎, 𝑑 – 𝑎), has in a natural way a fiber structure ℎ : 𝑊(𝑘, 𝑟 – 𝑘, 𝑎, 𝑑 – 𝑎) → Pic𝑎(𝑋) × Pic𝑏(𝑋) with ℎ dominant. Here we study the rationality or the unirationality of the generic fiber of ℎ.


Sign in / Sign up

Export Citation Format

Share Document