A Dilute-and-Shoot UHPLC-MS/MS Isotope Dilution Method for Simultaneous Determination and Confirmation of Eleven Mycotoxins in Dried Distillers Grains with Solubles
Abstract Background Natural contamination of mycotoxins in dried distiller’s grains with solubles (DDGS) as a mainstream animal feed ingredient poses risk to animal health. Objective A regulatory method was needed for the agency to simultaneously detect eleven mycotoxins of high regulatory priority in DDGS. Methods Ten grams of DDGS sample were extracted twice with acetonitrile/water under mildly acidic condition. Two aliquots from the combined crude extract were taken and processed separately: (1) diluted 400-fold with solvent for analysis of deoxynivalenol and fumonisins B1 and B2; (2) pH adjusted to 7.5, then diluted 15.7-fold for analysis of aflatoxins B1, B2, G1, G2, ochratoxin A, zearalenone, and T-2 and HT-2 toxins. Uniformly-labelled 13C-isotopologues of these mycotoxins were added as internal standards to the diluted extracts for quantitative analysis by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS). Results. The linear quantitation ranges (µg/kg) were: aflatoxin B1, B2, G1, and G2, 1.57 to 105; zearalenone, 16.3 to 1090; T-2 toxin, 3.14 to 208; HT-2 toxin, 48.2 to 3220; ochratoxin A, 0.47 to 31.4; deoxynivalenol, 240 to 16000; fumonisin B1 and B2, 320 to 21200. Accuracies for these analytes at each of three fortification levels range from 70.7% to 100%, with corresponding relative standard deviations between 1.4% to 10.5%. True recoveries were all higher than 83%. Conclusions This method was successfully validated to meet the agency’s performance guidelines for regulatory methods. Highlights This method is easy, quick and robust to simultaneously quantify and confirm presence of eleven regulated mycotoxins in DDGS.