scholarly journals Assessing the sources of reionisation: a spectroscopic case study of a 30× lensed galaxy at z ∼ 5 with Lyα, C iv, Mg ii, and [Ne iii]

Author(s):  
Joris Witstok ◽  
Renske Smit ◽  
Roberto Maiolino ◽  
Mirko Curti ◽  
Nicolas Laporte ◽  
...  

Abstract We present a detailed spectroscopic analysis of a galaxy at z ≃ 4.88 that is, by chance, magnified ∼30 × by gravitational lensing. Only three sources at z ≳ 5 are known with such high magnification. This particular source has been shown to exhibit widespread, high equivalent width ${\rm C\, {\small IV}}\, \lambda \, 1549$ emission, implying it is a unique example of a metal-poor galaxy with a hard radiation field, likely representing the galaxy population responsible for cosmic reionisation. Using UV nebular line ratio diagnostics, VLT/X-shooter observations rule out strong AGN activity, indicating a stellar origin of the hard radiation field instead. We present a new detection of ${[\rm Ne\, {\small III}]}\, \lambda \, 3870$ and use the [Ne iii]/[O ii] line ratio to constrain the ionisation parameter and gas-phase metallicity. Closely related to the commonly used [O iii]/[O ii] ratio, our [Ne iii]/[O ii] measurement shows this source is similar to local “Green Pea” galaxies and Lyman-continuum leakers. It furthermore suggests this galaxy is more metal poor than expected from the Fundamental Metallicity Relation, possibly as a consequence of excess gas accretion diluting the metallicity. Finally, we present the highest redshift detection of ${\rm Mg\, {\small II}}\, \lambda \, 2796$, observed at high equivalent width in emission, in contrast to more evolved systems predominantly exhibiting Mg ii absorption. Strong Mg ii emission has been observed in most z ∼ 0 Lyman-continuum leakers known and has recently been proposed as an indirect tracer of escaping ionising radiation. In conclusion, this strongly lensed galaxy, observed just 300 Myr after reionisation ends, enables testing of observational diagnostics proposed to constrain the physical properties of distant galaxies in the JWST/ELT era.

1998 ◽  
Vol 179 ◽  
pp. 241-248
Author(s):  
P. Schneider

Light rays from distant sources are deflected if they pass near an intervening matter inhomogeneity. This gravitational lens effect is responsible for the well-established lens systems like multiple-imaged QSOs, (radio) ‘Einstein’ rings, the giant luminous arcs in clusters of galaxies, and the flux variations of stars in the LMC and the Galactic bulge seen in the searches for compact objects in our Galaxy. These types of lensing events are nowadays called ‘strong lensing,’ to distinguish it from the effects discussed here: light bundles are not only deflected as a whole, but distorted by the tidal gravitational field of the deflector. This image distortion can be quite weak and can then not be detected in individual images. However, since we are lucky to live in a Universe where the sky is full of faint distant galaxies, this distortion effect can be discovered statistically. This immediately implies that weak lensing requires excellent and deep images so that image shapes (and sizes) can be accurately measured and the number density be as high as possible to reduce statistical uncertainties. Weak gravitational lensing can be defined as using the faint galaxy population to measure the mass and/or mass distribution of individual intervening cosmic structures, or the statistical properties of their mass distribution, or to detect them in the first place, independent of the physical state or nature of the matter, or the luminosity of these mass concentrations. In addition, weak lensing can be used to infer the redshift distribution of the faintest galaxies. After introducing the necessary concepts, I will list the main applications of weak lensing and discuss some of them in slightly more detail, stressing the need for very deep and wide-field images of the sky taken with instruments of excellent image quality.


2020 ◽  
Vol 499 (1) ◽  
pp. 768-792 ◽  
Author(s):  
Elad Zinger ◽  
Annalisa Pillepich ◽  
Dylan Nelson ◽  
Rainer Weinberger ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT Supermassive black holes (SMBHs) that reside at the centres of galaxies can inject vast amounts of energy into the surrounding gas and are thought to be a viable mechanism to quench star formation in massive galaxies. Here, we study the $10^{9-12.5}\, \mathrm{M_\odot }$ stellar mass central galaxy population of the IllustrisTNG simulation, specifically the TNG100 and TNG300 volumes at z = 0, and show how the three components – SMBH, galaxy, and circumgalactic medium (CGM) – are interconnected in their evolution. We find that gas entropy is a sensitive diagnostic of feedback injection. In particular, we demonstrate how the onset of the low-accretion black hole (BH) feedback mode, realized in the IllustrisTNG model as a kinetic, BH-driven wind, leads not only to star formation quenching at stellar masses $\gtrsim 10^{10.5}\, \mathrm{M_\odot }$ but also to a change in thermodynamic properties of the (non-star-forming) gas, both within the galaxy and beyond. The IllustrisTNG kinetic feedback from SMBHs increases the average gas entropy, within the galaxy and in the CGM, lengthening typical gas cooling times from $10\!-\!100\, \mathrm{Myr}$ to $1\!-\!10\, \mathrm{Gyr}$, effectively ceasing ongoing star formation and inhibiting radiative cooling and future gas accretion. In practice, the same active galactic nucleus (AGN) feedback channel is simultaneously ‘ejective’ and ‘preventative’ and leaves an imprint on the temperature, density, entropy, and cooling times also in the outer reaches of the gas halo, up to distances of several hundred kiloparsecs. In the IllustrisTNG model, a long-lasting quenching state can occur for a heterogeneous CGM, whereby the hot and dilute CGM gas of quiescent galaxies contains regions of low-entropy gas with short cooling times.


2020 ◽  
Vol 497 (4) ◽  
pp. 4495-4516 ◽  
Author(s):  
Peter D Mitchell ◽  
Joop Schaye ◽  
Richard G Bower

ABSTRACT The role of galactic wind recycling represents one of the largest unknowns in galaxy evolution, as any contribution of recycling to galaxy growth is largely degenerate with the inflow rates of first-time infalling material, and the rates with which outflowing gas and metals are driven from galaxies. We present measurements of the efficiency of wind recycling from the eagle cosmological simulation project, leveraging the statistical power of large-volume simulations that reproduce a realistic galaxy population. We study wind recycling at the halo scale, i.e. gas that has been ejected beyond the halo virial radius, and at the galaxy scale, i.e. gas that has been ejected from the interstellar medium to at least $\approx 10 \, {{\ \rm per\ cent}}$ of the virial radius. Galaxy-scale wind recycling is generally inefficient, with a characteristic return time-scale that is comparable to or longer than a Hubble time, and with an efficiency that clearly peaks at the characteristic halo mass of $M_{200} = 10^{12} \, \mathrm{M_\odot }$. Correspondingly, the majority of gas being accreted on to galaxies in eagle is infalling for the first time. Recycling is more efficient at the halo scale, with values that differ by orders of magnitude from those assumed by semi-analytical galaxy formation models. Differences in the efficiency of wind recycling with other hydrodynamical simulations are currently difficult to assess, but are likely smaller. We find that cumulative first-time gas accretion rates at the virial radius are reduced relative to the expectation from dark matter accretion for haloes with mass $M_{200} \lt 10^{12} \, \mathrm{M_\odot }$, indicating efficient preventative feedback on halo scales.


2019 ◽  
Vol 626 ◽  
pp. A72 ◽  
Author(s):  
C. Gouin ◽  
R. Gavazzi ◽  
C. Pichon ◽  
Y. Dubois ◽  
C. Laigle ◽  
...  

Context. Accurate model predictions including the physics of baryons are required to make the most of the upcoming large cosmological surveys devoted to gravitational lensing. The advent of hydrodynamical cosmological simulations enables such predictions on sufficiently sizeable volumes. Aims. Lensing quantities (deflection, shear, convergence) and their statistics (convergence power spectrum, shear correlation functions, galaxy-galaxy lensing) are computed in the past lightcone built in the Horizon-AGN hydrodynamical cosmological simulation, which implements our best knowledge on baryonic physics at the galaxy scale in order to mimic galaxy populations over cosmic time. Methods. Lensing quantities are generated over a one square degree field of view by performing multiple-lens plane ray-tracing through the lightcone, taking full advantage of the 1 kpc resolution and splitting the line of sight over 500 planes all the way to redshift z ∼ 7. Two methods are explored (standard projection of particles with adaptive smoothing, and integration of the acceleration field) to ensure a good implementation. The focus is on small scales where baryons matter most. Results. Standard cosmic shear statistics are affected at the 10% level by the baryonic component for angular scales below a few arcminutes. The galaxy-galaxy lensing signal, or galaxy-shear correlation function, is consistent with measurements for the redshift z ∼ 0.5 massive galaxy population. At higher redshift z ≳ 1, the effect of magnification bias on this correlation is relevant for separations greater than 1 Mpc. Conclusions. This work is pivotal for all current and upcoming weak-lensing surveys and represents a first step towards building a full end-to-end generation of lensed mock images from large cosmological hydrodynamical simulations.


2018 ◽  
Vol 614 ◽  
pp. A11 ◽  
Author(s):  
F. Marchi ◽  
L. Pentericci ◽  
L. Guaita ◽  
D. Schaerer ◽  
A. Verhamme ◽  
...  

Context. To identify the galaxies responsible for the reionization of the Universe, we must rely on the investigation of the Lyman continuum (LyC) properties of z ≲ 5 star-forming galaxies, where we can still directly observe their ionizing radiation. Aims. The aim of this work is to explore the correlation between the LyC emission and some of the proposed indirect indicators of LyC radiation at z ~ 4 such as a bright Lyα emission and a compact UV continuum size. Methods. We selected a sample of 201 star-forming galaxies from the Vimos Ultra Deep Survey (VUDS) at 3.5 ≤ z ≤ 4.3 in the COSMOS, ECDFS, and VVDS-2h fields, including only those with reliable spectroscopic redshifts, a clean spectrum in the LyC range and clearly not contaminated by bright nearby sources in the same slit. For all galaxies we measured the Lyα EW, the Lyα velocity shift with respect to the systemic redshift, the Lyα spatial extension and the UV continuum effective radius. We then selected different sub-samples according to the properties predicted to be good LyC emission indicators: in particular we created sub-samples of galaxies with EW(Lyα) ≥ 70 Å, Lyαext ≤ 5.7 kpc, rUV ≤ 0.30 kpc and |ΔvLyα|≤ 200 km s−1. We stacked all the galaxies in each sub-sample and measured the flux density ratio (fλ(895)∕fλ(1470)), that we considered to be a proxy for LyC emission. We then compared these ratios to those obtained for the complementary samples. Finally, to estimate the statistical contamination from lower redshift inter-lopers in our samples, we performed dedicated Monte Carlo simulations using an ultradeep U-band image of the ECDFS field. Results. We find that the stacks of galaxies which are UV compact (rUV ≤ 0.30 kpc) and have bright Lyα emission (EW(Lyα) ≥ 70 Å), have much higher LyC fluxes compared to the rest of the galaxy population. These parameters appear to be good indicators of LyC radiation in agreement with theoretical studies and previous observational works. In addition we find that galaxies with a low Lyα spatial extent (Lyαext ≤ 5.7 kpc) have higher LyC flux compared to the rest of the population. Such a correlation had never been analysed before and seems even stronger than the correlation with high EW(Lyα) and small rUV. These results assume that the stacks from all sub-samples present the same statistical contamination from lower redshift interlopers. If we subtract a statistical contamination from low redshift interlopers obtained with the simulations from the flux density ratios (fλ(895)∕fλ(1470)) of the significant sub-samples we find that these samples contain real LyC leaking flux with a very high probability, although the true average escape fractions are very uncertain. Conclusions. Our work indicates that galaxies with very high EW(Lyα), small Ly αext and small rUV are very likely the best candidates to show Lyman continuum radiation at z ~ 4 and could therefore be the galaxies that have contributed most to reionisation.


2018 ◽  
Vol 613 ◽  
pp. A15 ◽  
Author(s):  
Patrick Simon ◽  
Stefan Hilbert

Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scalekwith weak gravitational lensing. This method enables us to reconstruct the galaxy bias factorb(k) as well as the galaxy-matter correlationr(k) on spatial scales between 0.01hMpc−1≲k≲ 10hMpc−1for redshift-binned lens galaxies below redshiftz≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructedr(k). For simulated data, the reconstructions achieve an accuracy of 3–7% (68% confidence level) over the abovek-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10–15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates forb(k) andr(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.


2006 ◽  
Vol 2 (S235) ◽  
pp. 139-139
Author(s):  
L. Sodré ◽  
A. Mateus ◽  
R. Cid Fernandes ◽  
G. Stasińska ◽  
W. Schoenell ◽  
...  

AbstractWe revisit the bimodality of the galaxy population seen in the local universe. We address this issue in terms of physical properties of galaxies, such as mean stellar ages and stellar masses, derived from the application of a spectral synthesis method to galaxy spectra from the SDSS. We show that the mean light-weighted stellar age of galaxies presents the best description of the bimodality seen in the galaxy population. The stellar mass has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results give support to the existence of a ‘downsizing’ in galaxy formation, where nowadays massive galaxies tend to have stellar populations older than those found in less massive objects.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


1984 ◽  
Vol 108 ◽  
pp. 243-253
Author(s):  
Nolan R. Walborn

The supergiant H II region 30 Doradus is placed in context as the optically most spectacular component in a much larger region of recent and current star formation in the Large Magellanic Cloud, as shown by deep Hα photographs and the new IRAS results. The current state of knowledge concerning the concentrated central cluster in 30 Dor is summarized. Spectroscopic information exists for only 24 of the brightest members, most of which are WR stars; however, photometry shows over 100 probable members earlier than BO. The spectral classification of these stars is a difficult observational problem currently being addressed; in the meantime their hypothetical ionizing luminosity is calculated from the photometry and compared with that suggested for the superluminous central object R136a alone, and with the H II region luminosity. With reference to related regions in the Galaxy, the likelihood that many of the brightest objects in 30 Dor are multiple systems is emphasized. An interpretation of R136a as a system containing a few very massive stars (as opposed to a single supermassive object) is in good accord with the observations, including the visual micrometer results. The study of 30 Dor and its central cluster is vital for an understanding of the numerous apparently similar regions now being discovered in more distant galaxies.


Sign in / Sign up

Export Citation Format

Share Document