CHEMICAL CHARACTERISTICS OF HIDALGO FINE SANDY LOAM

Soil Science ◽  
1946 ◽  
Vol 62 (6) ◽  
pp. 457-468
Author(s):  
F. L. WYND ◽  
G. R. NOGGLE
1989 ◽  
Vol 69 (4) ◽  
pp. 799-811 ◽  
Author(s):  
LINNELL M. EDWARDS ◽  
J. R. BURNEY

Three soils from Prince Edward Island (a loam, a fine sandy loam, and a sandy loam) were tested under a laboratory rainfall simulator to examine the effects of frequency of freezing and thawing, winter rye cover, incorporated cereal residue, and subsoil compaction on runoff volume and sediment loss. Wooden soil boxes were subjected to simulated rain (i) at the end of a 10-d freezing period, and (ii) at the end of the 5th 24-h freezing period of a 10-d alternating freeze-thaw cycle (freeze/thaw). Where the soil was continuously frozen for 10 d, there was 178% greater sediment loss and 160% greater runoff than with daily freeze/thaw over the same period, but there was no difference in sediment concentration. Incorporated cereal residue decreased sediment loss to 50% and runoff to 77% of that from bare soil. Winter rye cover decreased sediment loss to 73% of that from bare soil. Simulated soil compaction caused a 45% increase in sediment loss. The loam soil showed 16.5% greater loss of fine sediment fractions <0.075 mm than the fine sandy loam which showed 23.4% greater loss than the sandy loam. Key words: Freeze-thaw, erosion, compaction, winter rye, cereal residue, rainfall simulator, Prince Edward Island soils


Weed Science ◽  
1982 ◽  
Vol 30 (6) ◽  
pp. 688-691 ◽  
Author(s):  
Michael G. Patterson ◽  
Gale A. Buchanan ◽  
Robert H. Walker ◽  
Richard M. Patterson

Analysis of fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] in soil solution after application of 0.5 or 1.0 ppmw revealed up to five-fold differences among three Alabama soils (Lucedale fine sandy loam, Decatur silty clay loam, and Sacul loam). Differences in fluometuron in soil solution were attributed to variable organic matter present and clay fractions. Fluometuron concentration in soil solution for each soil correlated well with control of four broadleaf weed species in a field experiment.


Soil Research ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 552 ◽  
Author(s):  
Shuang Jiang ◽  
Graeme D. Buchan ◽  
Mike J. Noonan ◽  
Neil Smith ◽  
Liping Pang ◽  
...  

This experiment investigated bacterial transport from land-applied dairy shed effluent (DSE), via field lysimeter studies, using 2 contrasting irrigation methods. Transient water flow and bacterial transport were studied, and the factors controlling faecal coliform (FC) transport are discussed. Two trials (Trial 1, summer; Trial 2, autumn) were carried out, using 6 undisturbed soil monolith lysimeters, 500 mm diameter by 700 mm deep, with a free-draining, Templeton fine sandy loam. DSE with inert chemical tracers was applied at the start of both trials using the same method, followed with repeated 14-day cycles of either flood or spray irrigation of water. A bacterial tracer, antibiotic-resistant faecal coliform, was added to the DSE in Trial 2 only, to distinguish applied FC from external or resident FC. Leachates were collected after each water application (or heavy rainfall when applicable) for enumeration of FC and measurement of tracers. All lysimeters were instrumented for monitoring volumetric water content, matric potential, and soil temperature at 4 depths (100, 250, 450, and 600 mm). The results showed that bacteria could readily penetrate through 700-mm-deep soil columns, when facilitated by water flow. The highest post-water irrigation concentration was 3.4 × 103 cfu/100 mL under flood irrigation, which resulted in more bacterial and Br– leaching than spray irrigation. Trial 2 (autumn) results also showed significant differences between irrigation treatments in lysimeters sharing similar drainage class (moderate or moderately rapid), flood irrigation again gave more bacterial and tracer (Cl–) leaching. In the summer trial, FC in leachate as high as 1.4 × 106 cfu/100 mL, similar to the concentration of DSE, was detected in one lysimeter that had a higher clay content in the topsoil immediately after DSE application, and before any water irrigation. This indicates that applied DSE leached through preferential flow paths without any dilution. Bacterial concentration in the leachate was positively correlated with both volumetric water content and water potential, and sometimes drainage rate. Greater bacterial leaching was found in the lysimeter with rapid whole-column effective hydraulic conductivity, Keff, for both flood and spray treatments. Occasionally, the effect of Keff on water movement and bacterial transport overrode the effect of irrigation. The ‘seasonal condition’ of the soil (including variation in initial water content) also influenced bacterial leaching, with less risk of leaching in autumn than in summer. These findings contribute to our increased understanding of bacterial transport processes on the field scale.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 641-647 ◽  
Author(s):  
Frederick M. Fishel ◽  
G. Euel Coats

Experiments were conducted in 1990 and 1991 to determine bioavailability of PRE herbicides at three soil profile depths and two soil types in established common bermudagrass sods. Prodiamine and oryzalin reduced ‘Tifgreen’ bermudagrass root growth in the 5- to 7.5-cm layer of a Bosket very fine sandy loam soil at 2 and 4 wk after treatment in 1991. These herbicides decreased bermudagrass root weight in both the Bosket and Marietta sandy clay loam both years in samples taken from the 2.5- to 5-cm depth layer. In the 0- to 2.5-cm soil layer, all herbicides reduced root weight in 1990. In a bioassay, prodiamine caused decreased Tifgreen bermudagrass root growth at concentrations as low as 4 ppb by wt in the very fine sandy loam soil, while 8 ppb was necessary in the sandy clay loam soil. Prodiamine was detected in the very fine sandy loam at 4 wk after treatment at all depths in 1991 (65, 45, and 39 ppb in the 0- to 2.5-, 2.5- to 5-, and 5- to 7.5-cm soil layers, respectively). Oryzalin was also detected at all depths in 1991 when sampled at 2 and 4 wk after treatment in the very fine sandy loam. Pendimethalin was present in concentrations of 38, 39, and 37 ppb in the sandy clay loam at 2 wk after treatment in the 0- to 2.5-, 2.5- to 5-, and the 5- to 7.5-cm soil layers, respectively. Pendimethalin was also detected in the very fine sandy loam at 2 wk after treatment at concentrations of 55, 69, and 36 ppb in the 0- to 2.5-, 2.5- to 5-, and 5- to 7.5-cm soil layers, respectively.


Weed Science ◽  
1983 ◽  
Vol 31 (2) ◽  
pp. 236-241 ◽  
Author(s):  
John H. Miller ◽  
Lyle M. Carter ◽  
Charles Carter

Tillage plus trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) and prometryn [2,4-bis (isopropylamino)-6-(methylthio)-s-triazine] and tillage plus trifluralin and fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] applied as soil-incorporated preplanting treatments were compared with tillage alone in cotton (Gossypium hirsutumL.) grown in 51-cm and 102-cm rows on fine sandy loam soil. Over 3 yr, cotton grown in 51-cm rows yielded 15% more than cotton grown in 102-cm rows. Final cotton emergence was not altered by weed-control treatment or by planting pattern. Weed-control treatments with herbicides provided essentially complete, season-long control of grass and broadleaf weeds. At cotton layby, more weeds were in no-herbicide plots with 51-cm rows compared with 102-cm rows, but at cotton harvest numbers of weeds in both row patterns were essentially equal.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 280-283 ◽  
Author(s):  
George H. Friesen ◽  
David A. Wall

Response of flax, canola, field pea, sunflower, field corn, lentils, and common buckwheat to soil residues of CGA-131036 and chlorsulfuron applied at 22 g ai ha–1was determined on two soil types at Morden, Manitoba. on a fine sandy loam with a pH of 7.4 and 4.5% organic matter, the length of time required before crops showed no phytotoxicity from CGA-131036 residues was: sunflower 4 yr; canola and common buckwheat 3 yr; flax 2 yr; field pea and field corn 1 yr. on a clay loam with a pH of 6.5 and 5.3% organic matter, the corresponding duration was: lentil, canola, and sunflower 3 yr; flax and field pea 1 yr. Chlorsulfuron residues persisted somewhat longer than CGA-131036 residues on the sandy loam but not on the clay loam.


2010 ◽  
Author(s):  
Kyung-Do Lee ◽  
Seon-Woong Hwang ◽  
Jong-Gook Kang ◽  
Ji-Ho Jeong ◽  
Jin-Hee Ryu ◽  
...  

1990 ◽  
Vol 14 (4) ◽  
pp. 173-177 ◽  
Author(s):  
James D. Haywood ◽  
Allan E. Tiarks

Abstract Through 11 years, fertilization at planting significantly increased the stemwood volume (outside bark) per loblolly pine (Pinus taeda L.) on an intensively prepared moderately well-drained fine sandy loam site in northern Louisiana. Four years of herbaceous plant control significantly increased pine survival, and because herbaceous plant control increased survival, it resulted in a significant increase in total stand volume. Woody plant control no longer produced significant results by age 11. South. J. Appl. For. 14(4):173-177.


2002 ◽  
Vol 80 (7) ◽  
pp. 1228-1239 ◽  
Author(s):  
Clayton D Apps ◽  
Nancy J Newhouse ◽  
Trevor A Kinley

American badgers (Taxidea taxus) are endangered in British Columbia due to habitat loss and human-caused mortality. To better understand human impacts and to promote conservation planning, we described badger habitat relationships. At two spatial scales, we analyzed selection by 12 radio-implanted resident badgers for soil composition, forest overstory, land cover, vegetation productivity, terrain, and human influence. At a broad (23.8 km2) landscape scale, soil parent-material associations were positive with glaciolacustrine and glaciofluvial and negative with colluvial. Soil-order associations were positive with brunisols and regosols and negative with podzols and luvisols. Association with fine sandy-loam texture was positive. Associations were negative with forested habitats and positive with open range, agricultural habitats, and linear disturbances. Associations were negative with elevation, slope, terrain ruggedness, and both vegetation productivity and moisture. At a fine (14.5 ha) scale, associations were positive with glaciofluvial, fine sandy-loam textured, and well-drained soils. Associations were negative with colluvial soils, forest cover, vegetation moisture, elevation, and ruggedness. Associations with open range and southern aspects were positive. The linear combination of a subset of variables could explain and predict habitat selection. At this range extent, natural conditions may restrict badger occurrence, increasing badger sensitivity to human factors that influence habitat quality and mortality.


Sign in / Sign up

Export Citation Format

Share Document