Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile

2017 ◽  
Vol 35 (3) ◽  
pp. 558-570 ◽  
Author(s):  
Chieh-Wen Chen ◽  
Terry B.J. Kuo ◽  
Chun-Yu Chen ◽  
Cheryl C.H. Yang
2002 ◽  
Vol 282 (6) ◽  
pp. H2336-H2345 ◽  
Author(s):  
Linda F. Hayward ◽  
Alecia P. Riley ◽  
Robert B. Felder

We examined the effect of α2-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered α2-adrenoreceptor mechanisms in SHR.


2007 ◽  
Vol 293 (1) ◽  
pp. R293-R298 ◽  
Author(s):  
Chiara Berteotti ◽  
Valentina Asti ◽  
Vera Ferrari ◽  
Carlo Franzini ◽  
Pierluigi Lenzi ◽  
...  

We investigated whether the relative contribution of the baroreflex and central commands to the control of heart period differs between spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY) during physiological behavior. Rats were instrumented with an arterial catheter and with electrodes for discriminating wakefulness, nonrapid eye movement sleep (NREMS), and rapid eye movement sleep (REMS). The cross-correlation function (CCF) between spontaneous fluctuations of heart period and mean arterial pressure was computed at frequencies <0.2 Hz. The baroreflex determines a positive correlation between heart period and previous pressure values. This pattern was observed in the CCF during quiet wakefulness (QW) and NREMS, and in QW, it was accompanied by a pronounced negative correlation between heart period and subsequent pressure values. The relative baroreflex contribution to the control of heart period, estimated from the positive peak value of the CCF, was lower in SHR than in WKY during QW but not during NREMS. During REMS, the CCF showed a negative correlation between heart period and both previous and subsequent pressure values, reflecting the prevalence of central autonomic commands. The relative contribution of central commands to the control of heart period, estimated from the negative peak value of the CCF, was lower in SHR than in WKY during REMS. These results suggest that during QW and REMS, the control of heart period exerted by the baroreflex and central commands, respectively, is less effective in SHR than in WKY. This difference is not apparent in a behavioral state of autonomic stability such as NREMS.


1994 ◽  
Vol 266 (2) ◽  
pp. H496-H502 ◽  
Author(s):  
B. S. Huang ◽  
F. H. Leenen

Different changes in baroreflex control of the circulation have been postulated to play a role in the different blood pressure (BP) effects of dietary sodium in normotensive vs. genetically hypertensive rats. We therefore evaluated in young Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR), with or without chronic sinoaortic denervation (SAD), the effects of low, regular, and high dietary sodium intake from 4 to 8 wk of age on BP and baroreflex function. The latter was assessed by changes in renal sympathetic nerve activity (RSNA) and heart rate in response to (de)pressor agents. In SHR, the above range of sodium caused a marked change in resting BP, somewhat more in intact (48 mmHg) vs. SAD (36 mmHg) rats. In contrast, in WKY this range of sodium intake caused only a minor (7 mmHg) change in resting BP of intact WKY but a significant (16 mmHg) change in WKY with SAD, mainly due to an increase in BP on high sodium. In intact WKY increasing dietary sodium from low to regular to high caused stepwise increases in the gain of the RSNA-BP reflex, whereas in intact SHR only an increase from low to regular sodium intake increased the gain. After SAD, the gain of the RSNA-BP reflex was very low, and no longer affected by dietary sodium in either strain. These data suggest that in WKY a sensitization in arterial baroreflex control of RSNA prevents a sodium-induced increase in BP.(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 309 (11) ◽  
pp. R1397-R1405 ◽  
Author(s):  
Michael J. Turner ◽  
Toru Kawada ◽  
Shuji Shimizu ◽  
Masafumi Fukumitsu ◽  
Masaru Sugimachi

The aim of the study was to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity (SNA) and arterial pressure (AP) in anesthetized Wistar-Kyoto (WKY; n = 8) and spontaneously hypertensive rats (SHR; n = 8). The left aortic depressor nerve (ADN) was electrically stimulated with two types of binary white noise signals designed to preferentially activate A-fibers (A-BRx protocol) or C-fibers (C-BRx protocol). In WKY, the central arc transfer function from ADN stimulation to SNA estimated by A-BRx showed strong derivative characteristics with the slope of dynamic gain between 0.1 and 1 Hz ( Gslope) of 14.63 ± 0.89 dB/decade. In contrast, the central arc transfer function estimated by C-BRx exhibited nonderivative characteristics with Gslope of 0.64 ± 1.13 dB/decade. This indicates that A-fibers are important for rapid baroreflex regulation, whereas C-fibers are likely important for more sustained regulation of SNA and AP. In SHR, the central arc transfer function estimated by A-BRx showed higher Gslope (18.46 ± 0.75 dB/decade, P < 0.01) and that estimated by C-BRx showed higher Gslope (8.62 ± 0.64 dB/decade, P < 0.001) with significantly lower dynamic gain at 0.01 Hz (6.29 ± 0.48 vs. 2.80 ± 0.36%/Hz, P < 0.001) compared with WKY. In conclusion, the dynamic characteristics of the A-fiber central pathway are enhanced in the high-modulation frequency range (0.1–1 Hz) and those of the C-fiber central pathway are attenuated in the low-modulation frequency range (0.01–0.1 Hz) in SHR.


1992 ◽  
Vol 263 (3) ◽  
pp. R524-R528 ◽  
Author(s):  
S. Harada ◽  
T. Imaizumi ◽  
S. Ando ◽  
Y. Hirooka ◽  
K. Sunagawa ◽  
...  

To investigate dynamic or frequency-dependent characteristics of arterial baroreflex control of efferent sympathetic nerve activity in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY), we assessed the transfer function from aortic pressure (AP) to renal sympathetic nerve activity (RSNA) using a “white-noise technique.” In pentobarbital sodium-anesthetized rats, we recorded RSNA as the output, while AP was randomly perturbed to impose input pressure changes with broad frequencies. We calculated the transfer function from AP to RSNA over the frequency range of 0.01-5 Hz through the spectral analysis of the input and output. The results indicated that the gain, phase shift, and coherence of the transfer function for SHR and for WKY were similar and statistically indistinguishable. The gain was relatively constant below 0.05 Hz but increased steadily by fivefold as frequency increased in the frequency range of 0.05-0.8 Hz. The phase was out of phase where coherence was high. The coherence was high (greater than 0.5) in the frequency range of 0.04-0.8 and 1.00-1.03 Hz but was low in other frequencies. These results suggest that dynamic or frequency-dependent characteristics of arterial baroreflex control of RSNA were not altered in SHR as compared with WKY.


Sign in / Sign up

Export Citation Format

Share Document