Optimally scalable matrices
The characterization of matrices which can be optimally scaled with respect to various modes of scaling is studied. Particular attention is given to the following two problems: ( a) The characterization of those square matrices for which inf lub (D -1 MD) D is attainable for some non-singular diagonal matrix D . ( b) The characterization of those square non-singular matrices A for which inf cond 12 (D 1 AD 2 ) D 1 , D 2 is attainable for some non-singular diagonal matrices D 1 and D 2 . For norms having certain properties, various necessary and sufficient conditions for optimal scalability are obtained when, in problem ( a ), the matrix A and, in problem ( b ), both A and A -1 have chequerboard sign distribution. The characterizations so established impose various conditions on the combinatorial and spectral structure of the matrices. These are investigated by using results from the Perron-Frobenius theory of non-negative matrices and combinatorial matrix theory. It is shown that the Holder or l p -norms have the required properties, and that, in general, the only norms having all of the properties needed, for both the necessary and the sufficient conditions to be satisfied, are variants of the l p -norms. For the special cases p = 1 and p = oo, the characterizations obtained hold for all matrices, irrespective of sign distribution.