scholarly journals SU(2)Yang-Mills theory in the Savvidy background at finite temperature and chemical potential

2007 ◽  
Vol 75 (8) ◽  
Author(s):  
R. Parthasarathy ◽  
A. Kumar
Author(s):  
Varun Sethi

Witten–Sakai–Sugimoto model is used to study Yang–Mills theory with flavors and large number of colors at finite temperature and in the presence of chemical potential for baryon number and isospin. Sources for [Formula: see text] and [Formula: see text] gauge fields on the flavor 8-branes are D4-branes wrapped on [Formula: see text] part of the background. Here, gauge symmetry on the flavor branes has been decomposed as [Formula: see text] and [Formula: see text] is within [Formula: see text] and generated by the diagonal generator. We show various brane configurations, along with the phases in the boundary theory they correspond to, and explore the possibility of phase transition between various pairs of phases.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Qianqian Du ◽  
Michael Strickland ◽  
Ubaid Tantary

Abstract We calculate the resummed perturbative free energy of $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills in four spacetime dimensions (SYM4,4) through second order in the ’t Hooft coupling λ at finite temperature and zero chemical potential. Our final result is ultraviolet finite and all infrared divergences generated at three-loop level are canceled by summing over SYM4,4 ring diagrams. Non-analytic terms at $$ \mathcal{O} $$ O (λ3/2) and $$ \mathcal{O} $$ O (λ2 log λ) are generated by dressing the A0 and scalar propagators. The gauge-field Debye mass mD and the scalar thermal mass MD are determined from their corresponding finite-temperature self-energies. Based on this, we obtain the three-loop thermodynamic functions of SYM4,4 to $$ \mathcal{O} $$ O (λ2). We compare our final result with prior results obtained in the weak- and strong-coupling limits and construct a generalized Padé approximant that interpolates between the weak-coupling result and the large-Nc strong-coupling result. Our results suggest that the $$ \mathcal{O} $$ O (λ2) weak-coupling result for the scaled entropy density is a quantitatively reliable approximation to the scaled entropy density for 0 ≤ λ ≲ 2.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2251-2252 ◽  
Author(s):  
MASAFUMI ISHIHARA ◽  
KAZUO GHOROKU ◽  
AKIHIRO NAKAMURA

N = 2 supersymmetric Yang-Mills theory with flavor hypermultiplets at finite temperature is studied for finite quark number density (nb) by a dual supergravity background with nontrivial dilaton and axion. The quarks and their number density nb are introduced by embeddings a probe D7 brane. We find a critical value of the chemical potential at the limit of nb = 0, and it coincides with the effective quark mass for nb = 0. At this point, a transition of the D7 embedding configurations occurs between their two typical ones. The phase diagrams of this transition are shown in the plane of chemical potential versus temperature for Yang-Mills theory at finite temperature. In this phase transition, the order parameter is considered as nb. This result seems to be reasonable since this theory is in the quark deconfiment phase.


2017 ◽  
Vol 2017 ◽  
pp. 1-24 ◽  
Author(s):  
Alejandro Ayala ◽  
C. A. Dominguez ◽  
M. Loewe

The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for deconfinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing analysing the Weinberg sum rules and predicting the dimuon spectrum in heavy-ion collisions in the region of the rho-meson. Also, in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.


2006 ◽  
Vol 74 (8) ◽  
Author(s):  
F. T. Brandt ◽  
Ashok Das ◽  
Olivier Espinosa ◽  
J. Frenkel ◽  
Silvana Perez

2019 ◽  
Vol 34 (01) ◽  
pp. 1950003
Author(s):  
Yu-Qiang Cui ◽  
Zhong-Liang Pan

We investigate the finite-temperature and zero quark chemical potential QCD chiral phase transition of strongly interacting matter within the two-flavor Nambu–Jona-Lasinio (NJL) model as well as the proper time regularization. We use two different regularization processes, as discussed in Refs. 36 and 37, separately, to discuss how the effective mass M varies with the temperature T. Based on the calculation, we find that the M of both regularization schemes decreases when T increases. However, for three different parameter sets, quite different behaviors will show up. The results obtained by the method in Ref. 36 are very close to each other, but those in Ref. 37 are getting farther and farther from each other. This means that although the method in Ref. 37 seems physically more reasonable, it loses the advantage in Ref. 36 of a small parameter dependence. In addition, we also, find that two regularization schemes provide similar results when T [Formula: see text] 100 MeV, while when T is larger than 100 MeV, the difference becomes obvious: the M calculated by the method in Ref. 36 decreases more rapidly than that in Ref. 37.


2005 ◽  
Vol 42 (2) ◽  
pp. 183-190 ◽  
Author(s):  
D. U. Matrasulov ◽  
F. C. Khanna ◽  
U. R. Salomov ◽  
A. E. Santana

Sign in / Sign up

Export Citation Format

Share Document