Rietveld texture analysis of complex oxides: examples of polyphased Bi2223 superconducting and Co349 thermoelectric textured ceramics characterization using neutron and X-ray diffraction

2005 ◽  
Vol 38 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Emmanuel Guilmeau ◽  
Daniel Chateigner ◽  
Jacques Noudem ◽  
Ryoji Funahashi ◽  
Shigeru Horii ◽  
...  

Orientation distributions of cobaltite thermoelectric and polyphased bismuth-based cuprate superconducting textured materials are determined from neutron and X-ray diffraction analysis. Curved position-sensitive detectors coupled to a tilt-angle (χ) scan enable the treatment of the whole diffraction pattern using the combined Rietveld–WIMV–Popa algorithm. The textures of three phases of superconducting compounds are determined. The critical current densities, measured for four samples, are strongly dependent on the calculated texture strengths, crystallite sizes and phase ratios. For the cobaltite compounds, a comparison between X-ray and neutron analysis shows the advantages of the latter technique for avoiding the limitations of the X-ray analysis with respect to the defocusing effect. The results highlight the necessity and efficiency of the combined approach for a quantitative texture analysis of complex materials and exemplify the texture–anisotropic physical properties relationship for a better understanding and design of improved bulk superconducting and thermoelectric materials.

2005 ◽  
Vol 105 ◽  
pp. 385-390
Author(s):  
E. Guilmeau ◽  
Daniel Chateigner ◽  
J. Noudem ◽  
B. Ouladdiaf

Orientation distributions of polyphased (Bi,Pb)2Sr2Ca2Cu3O10+d superconducting textured materials are determined from neutron diffraction analysis. The quantitative texture analysis of neutron data was accomplished by using the combined Rietveld-WIMV-Popa algorithms, implemented in the program package Materials Analysis Using Diffraction (MAUD). Curved position-sensitive detector and 4-circle diffractometry allow the whole diffraction pattern treatment. Transport critical current densities, measured on different samples, are strongly dependent of the calculated texture strengths, crystallite sizes and phase ratios. The results prove the interest of the combined approach for a quantitative texture analysis of complex materials. Texture to anisotropic physical properties relationship is discussed.


Author(s):  
A. Zangvil ◽  
L.J. Gauckler ◽  
G. Schneider ◽  
M. Rühle

The use of high temperature special ceramics which are usually complex materials based on oxides, nitrides, carbides and borides of silicon and aluminum, is critically dependent on their thermomechanical and other physical properties. The investigations of the phase diagrams, crystal structures and microstructural features are essential for better understanding of the macro-properties. Phase diagrams and crystal structures have been studied mainly by X-ray diffraction (XRD). Transmission electron microscopy (TEM) has contributed to this field to a very limited extent; it has been used more extensively in the study of microstructure, phase transformations and lattice defects. Often only TEM can give solutions to numerous problems in the above fields, since the various phases exist in extremely fine grains and subgrain structures; single crystals of appreciable size are often not available. Examples with some of our experimental results from two multicomponent systems are presented here. The standard ion thinning technique was used for the preparation of thin foil samples, which were then investigated with JEOL 200A and Siemens ELMISKOP 102 (for the lattice resolution work) electron microscopes.


Hydrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 11-21
Author(s):  
Youyi Sun ◽  
Alexey Y. Ganin

Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However, scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes, making the search for earth-abundant and cheaper alternatives important. Herein, we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested, they achieve competitively low overpotentials of 115 mV (Co3Mo) and 160 mV (Co7Mo6) at 10 mA cm−2 in 0.5 M H2SO4, and 120 mV (Co3Mo) and 160 mV (Co7Mo6) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals, which showed significantly higher overpotentials and lower current densities when tested under identical conditions, confirming the synergistic effect of the alloying. However, the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand, Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring, polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.


Author(s):  
Mateus Dobecki ◽  
Alexander Poeche ◽  
Walter Reimers

AbstractDespite the ongoing success of understanding the deformation states in sheets manufactured by single-point incremental forming (SPIF), the unawareness of the spatially resolved influence of the forming mechanisms on the residual stress states of incrementally formed sheet metal parts impedes their application-optimized use. In this study, a well-founded experimental proof of the occurring forming mechanisms shear, bending and stretching is presented using spatially resolved, high-energy synchrotron x-ray diffraction-based texture analysis in transmission mode. The measuring method allows even near-surface areas to be examined without any impairment of microstructural influences due to tribological reactions. The depth-resolved texture evolution for different sets of forming parameters offers insights into the forming mechanisms acting in SPIF. Therefore, the forming mechanisms are triggered explicitly by adjusting the vertical step-down increment Δz for groove, plate and truncated cone geometries. The texture analysis reveals that the process parameters and the specimen geometries used lead to characteristic changes in the crystallites’ orientation distribution in the formed parts due to plastic deformation. These forming-induced reorientations of the crystallites could be assigned to the forming mechanisms by means of defined reference states. It was found that for groove, plate and truncated cone geometries, a decreasing magnitude of step-down increments leads to a more pronounced shear deformation, which causes an increasing work hardening especially at the tool contact area of the formed parts. Larger step-down increments, on the other hand, induce a greater bending deformation. The plastic deformation by bending leads to a complex stress field that involves alternating residual tensile stresses on the tool and residual compressive stresses on the tool-averted side incrementally formed sheets. The present study demonstrates the potential of high-energy synchrotron x-ray diffraction for the spatially resolved forming mechanism research in SPIF. Controlling the residual stress states by optimizing the process parameters necessitates knowledge of the fundamental forming mechanism action.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2017 ◽  
Vol 898 ◽  
pp. 1431-1437
Author(s):  
Hong Yang Shao ◽  
Kan Zhang ◽  
Yi Dan Zhang ◽  
Mao Wen ◽  
Wei Tao Zheng

The δ-NbN thin films with different thickness have been prepared by reactive magnetron sputtering at different deposition time and exhibited alternating textures between (111) and (200) orientations as a function of thickness. In addition, the grain size, peak position, morphology, residual stress and orientation distributions of the deposited films were explored by X-ray diffraction, low-angel X-ray reflectivity, scanning electron microscopy and surface profiler. The film deposited at 300 s showed a (111) preferred orientation, changing to (200) preferred orientation at 600 s, and exhibited alternating textures between (111) and (200) preferred orientations. With further increasing deposition time, in which (200) peak position and the full width at half maximum of (111) peak also displayed a trend of alternating variation with varying deposition time. The intrinsic stress for δ-NbN films calculated by Stoney equation alternately changed with alternating textures, in which (111) orientation always takes place at relatively high intrinsic stress state and vice versa. Meanwhile, the film with (111) preferred orientation showed higher density than (200) preferred orientation. The film deposited at 4800 s owned a mixed texture of (111) and (200), showing an anisotropy distribution of (111)-oriented and (200)-oriented grains, while film deposited at 7200 s owned a strong (200) texture, displaying an isotropy distribution of (200)-oriented grains. The competitive growth between (111)-oriented and (200)-oriented grains was responsibility for alternating texture.


2017 ◽  
Vol 42 (1) ◽  
pp. 23-29
Author(s):  
Hua Song ◽  
Shengnan Li ◽  
Hualin Song ◽  
Feng Li ◽  
Huapeng Cui

A number of Zn–S2O82–/ZrO2–Al2O3 (Zn( x)–SZA) catalysts with different Zn mass fractions were synthesised and characterised by using X-ray diffraction, the Brunauer–Emmett–Teller method, and H2 temperature-programmed reduction. The structure and isomerisation performance of Zn( x)–SZA catalysts were studied using n-pentane as a probe reaction. The results showed that a pure tetragonal ZrO2 phase was formed on Zn( x)–SZA, and the ZrO2 crystallite sizes of the tetragonal phase increased in the order: Zn(0.5)–SZA < Zn(1.0)–SZA < Zn(1.5)–SZA < Zn(2.0)–SZA < SZA. Zn can strengthen the interaction between persulfate ions and the support, promote the formation of stronger acidity, lead to a better dispersion of sulfate ions on the surface, and improve the redox performance of the catalysts. The Zn(1.0)–SZA catalyst exhibited the best catalytic activity for n-pentane isomerisation. At a temperature of 170 °C, a reaction pressure of 2.0 MPa, a molar H2/ n-pentane ratio of 4:1, and a weight hourly space velocity of 1.0 h−1, the isopentane yield reached 58.0%.


Sign in / Sign up

Export Citation Format

Share Document