Magnetic Sensing with Nitrogen-Vacancy Centers Based on Lock-in Detection

Author(s):  
E. Moreva ◽  
E. Bernardi ◽  
P. Traina ◽  
G. Petrini ◽  
S. Ditalia Tchernij ◽  
...  
2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ettore Bernardi ◽  
Ekaterina Moreva ◽  
Paolo Traina ◽  
Giulia Petrini ◽  
Sviatoslav Ditalia Tchernij ◽  
...  

Abstract We present an innovative experimental set-up that uses Nitrogen-Vacancy centres in diamonds to measure magnetic fields with the sensitivity of $\eta =68\pm 3~\mathrm{nT}/\sqrt{\mathrm{Hz}}$ η = 68 ± 3 nT / Hz at demonstrated (sub)cellular scale. The presented method of magnetic sensing, utilizing a lock-in based ODMR technique for the optical detection of microwave-driven spin resonances induced in NV centers, is characterized by the excellent magnetic sensitivity at such small scale and the full biocompatibility. The cellular scale is obtained using a NV-rich sensing layer of 15 nm thickness along z axis and a focused laser spot of $(10 \times 10)~\mu\mathrm{m}^{2}$ ( 10 × 10 ) μ m 2 in x-y plane. The biocompatibility derives from an accurate choice of the applied optical power. For this regard, we also report how the magnetic sensitivity changes for different applied laser power and discuss the limits of the sensitivity sustainable with biosystem at such small volume scale. As such, this method offers a whole range of research possibilities for biosciences.


2021 ◽  
Author(s):  
Huijie Zheng ◽  
Arne Wickenbrock ◽  
Georgios Chatzidrosos ◽  
Lykourgos Bougas ◽  
Nathan Leefer ◽  
...  

In modern-day quantum metrology, quantum sensors are widely employed to detect weak magnetic fields or nanoscale signals. Quantum devices, exploiting quantum coherence, are inevitably connected to physical constants and can achieve accuracy, repeatability, and precision approaching fundamental limits. As a result, these sensors have shown utility in a wide range of research domains spanning both science and technology. A rapidly emerging quantum sensing platform employs atomic-scale defects in crystals. In particular, magnetometry using nitrogen-vacancy (NV) color centers in diamond has garnered increasing interest. NV systems possess a combination of remarkable properties, optical addressability, long coherence times, and biocompatibility. Sensors based on NV centers excel in spatial resolution and magnetic sensitivity. These diamond-based sensors promise comparable combination of high spatial resolution and magnetic sensitivity without cryogenic operation. The above properties of NV magnetometers promise increasingly integrated quantum measurement technology, as a result, they have been extensively developed with various protocols and find use in numerous applications spanning materials characterization, nuclear magnetic resonance (NMR), condensed matter physics, paleomagnetism, neuroscience and living systems biology, and industrial vector magnetometry. In this chapter, NV centers are explored for magnetic sensing in a number of contexts. In general, we introduce novel regimes for magnetic-field probes with NV ensembles. Specifically, NV centers are developed for sensitive magnetometers for applications where microwaves (MWs) are prohibitively invasive and operations need to be carried out under zero ambient magnetic field. The primary goal of our discussion is to improve the utility of these NV center-based magnetometers.


2021 ◽  
Vol 92 (4) ◽  
pp. 044904
Author(s):  
Shao-Chun Zhang ◽  
Yang Dong ◽  
Bo Du ◽  
Hao-Bin Lin ◽  
Shen Li ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2011 ◽  
Vol 83 (8) ◽  
Author(s):  
M. V. Hauf ◽  
B. Grotz ◽  
B. Naydenov ◽  
M. Dankerl ◽  
S. Pezzagna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document