scholarly journals Novel Magnetic-Sensing Modalities with Nitrogen-Vacancy Centers in Diamond*

2021 ◽  
Author(s):  
Huijie Zheng ◽  
Arne Wickenbrock ◽  
Georgios Chatzidrosos ◽  
Lykourgos Bougas ◽  
Nathan Leefer ◽  
...  

In modern-day quantum metrology, quantum sensors are widely employed to detect weak magnetic fields or nanoscale signals. Quantum devices, exploiting quantum coherence, are inevitably connected to physical constants and can achieve accuracy, repeatability, and precision approaching fundamental limits. As a result, these sensors have shown utility in a wide range of research domains spanning both science and technology. A rapidly emerging quantum sensing platform employs atomic-scale defects in crystals. In particular, magnetometry using nitrogen-vacancy (NV) color centers in diamond has garnered increasing interest. NV systems possess a combination of remarkable properties, optical addressability, long coherence times, and biocompatibility. Sensors based on NV centers excel in spatial resolution and magnetic sensitivity. These diamond-based sensors promise comparable combination of high spatial resolution and magnetic sensitivity without cryogenic operation. The above properties of NV magnetometers promise increasingly integrated quantum measurement technology, as a result, they have been extensively developed with various protocols and find use in numerous applications spanning materials characterization, nuclear magnetic resonance (NMR), condensed matter physics, paleomagnetism, neuroscience and living systems biology, and industrial vector magnetometry. In this chapter, NV centers are explored for magnetic sensing in a number of contexts. In general, we introduce novel regimes for magnetic-field probes with NV ensembles. Specifically, NV centers are developed for sensitive magnetometers for applications where microwaves (MWs) are prohibitively invasive and operations need to be carried out under zero ambient magnetic field. The primary goal of our discussion is to improve the utility of these NV center-based magnetometers.

2018 ◽  
Vol 190 ◽  
pp. 02008
Author(s):  
Taras Plakhotnik ◽  
Haroon Aman

The paper describes application of diamond nano crystals to research on dynamic processes in small (less than 1 mm across) evaporating droplets deposited on a solid substrate. Such droplets are used as a model system for testing proposed bio applications of nitrogen-vacancy centers in diamond. We demonstrate that a high spatial resolution of our methods reveals unexpected features of the evaporation and fluid mechanics in such droplets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yulei Chen ◽  
Zhonghao Li ◽  
Hao Guo ◽  
Dajin Wu ◽  
Jun Tang

AbstractQuantum sensing based on nitrogen-vacancy centers in diamond has shown excellent properties. Combined with the imaging technique, it shows exciting practicability. Here, we demonstrate the simultaneously imaging technique of magnetic field and temperature using a wide-field quantum diamond microscope. We describe the operating principles of the diamond microscope and report its sensitivity (magnetic field ${\sim}1.8~\mu \mbox{T/Hz}^{1/2}$ ∼ 1.8 μ T/Hz 1 / 2 and temperature ${\sim}0.4~\mbox{K/Hz}^{1/2}$ ∼ 0.4 K/Hz 1 / 2 ), spatial resolution (1.3 μm), and field of view ($400 \times 300~\mu \mbox{m}^{2}$ 400 × 300 μ m 2 ). Finally, we use the microscope to obtain images of an integrated cell heater and a PCB, demonstrating its ability in the application of magnetic field and temperature simultaneously imaging at wide-field.


2021 ◽  
Vol 11 (7) ◽  
pp. 3069
Author(s):  
Xue Zhang ◽  
Georgios Chatzidrosos ◽  
Yinan Hu ◽  
Huijie Zheng ◽  
Arne Wickenbrock ◽  
...  

Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries using noninvasive detection. We demonstrate a microwave-free alternating current (AC) magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between nitrogen-vacancy (NV) centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructively image solid-state batteries. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolution is μμμ360μm. The maximum magnetic field and phase shift generated by the battery at the modulation frequency of 5 kHz are estimated as 0.04 mT and 0.03 rad respectively.


Author(s):  
S.I. Woods ◽  
Nesco M. Lettsome ◽  
A.B. Cawthorne ◽  
L.A. Knauss ◽  
R.H. Koch

Abstract Two types of magnetic microscopes have been investigated for use in high resolution current mapping. The scanning fiber/SQUID microscope uses a SQUID sensor coupled to a nanoscale ferromagnetic probe, and the GMR microscope employs a nanoscale giant magnetoresistive sensor. Initial scans demonstrate that these microscopes can resolve current lines less than 10 µm apart with edge resolution of 1 µm. These types of microscopes are compared with the performance of a standard scanning SQUID microscope and with each other with respect to spatial resolution and magnetic sensitivity. Both microscopes show great promise for identifying current defects in die level devices.


Author(s):  
Filipe Camarneiro ◽  
Juanita Bocquel ◽  
Juan Gallo ◽  
Manuel Bañobre‐López ◽  
Kirstine Berg‐Sørensen ◽  
...  

2018 ◽  
Vol 113 (1) ◽  
pp. 013502 ◽  
Author(s):  
Adam M. Wojciechowski ◽  
Mürsel Karadas ◽  
Christian Osterkamp ◽  
Steffen Jankuhn ◽  
Jan Meijer ◽  
...  

2018 ◽  
Vol 52 (14) ◽  
pp. 1865-1867
Author(s):  
D. S. Filimonenko ◽  
V. M. Yasinskii ◽  
A. P. Nizovtsev ◽  
S. Ya. Kilin

Author(s):  
E. Moreva ◽  
E. Bernardi ◽  
P. Traina ◽  
G. Petrini ◽  
S. Ditalia Tchernij ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Shuya Ishii ◽  
Seiichi Saiki ◽  
Shinobu Onoda ◽  
Yuta Masuyama ◽  
Hiroshi Abe ◽  
...  

Electron beam irradiation into type-Ib diamond is known as a good method for the creation of high concentration negatively-charged nitrogen-vacancy (NV−) centers by which highly sensitive quantum sensors can be fabricated. In order to understand the creation mechanism of NV− centers, we study the behavior of substitutional isolated nitrogen (P1 centers) and NV− centers in type-Ib diamond, with an initial P1 concentration of 40–80 ppm by electron beam irradiation up to 8.0 × 1018 electrons/cm2. P1 concentration and NV− concentration were measured using electron spin resonance and photoluminescence measurements. P1 center count decreases with increasing irradiation fluence up to 8.0 × 1018 electrons/cm2. The rate of decrease in P1 is slightly lower at irradiation fluence above 4.0 × 1018 electrons/cm2 especially for samples of low initial P1 concentration. Comparing concentration of P1 centers with that of NV− centers, it suggests that a part of P1 centers plays a role in the formation of other defects. The usefulness of electron beam irradiation to type-Ib diamonds was confirmed by the resultant conversion efficiency from P1 to NV− center around 12–19%.


Sign in / Sign up

Export Citation Format

Share Document