Reliability study and failure analysis of fine pitch solder bumped flip chip on low-cost printed circuit board substrate

Author(s):  
Guo-Wei Xiao ◽  
P.C.H. Chan ◽  
A. Teng ◽  
P.S.W. Lee ◽  
M.M.F. Yuen
Author(s):  
Raj Kabadi ◽  
Win Thandar Swe

Abstract A novel low cost technique to facilitate concurrent topside and backside imaging of a bare die for optical fault localization purposes is presented. The technique overcomes the restrictions posed by unavailability of a suitable package or limited choices that may be present at a small scale packaging lab. The difficulties imposed on backside preparation of commonly used ceramic packages are overcome by providing an alternative that is relatively less expensive and easier to implement. This is accomplished by mounting the bare die on a glass cover slip using a suitable adhesive and wire bonding the bond pads to a specially designed printed circuit board. This method is being successfully utilized on multiple failure analysis requests received in our lab.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


2002 ◽  
Vol 124 (3) ◽  
pp. 205-211 ◽  
Author(s):  
John H. Lau ◽  
S. W. Ricky Lee ◽  
Stephen H. Pan ◽  
Chris Chang

An elasto-plastic-creep analysis of a low-cost micro via-in-pad (VIP) substrate for supporting a solder bumped flip chip in a chip scale package (CSP) format which is soldered onto a printed circuit board (PCB) is presented in this study. Emphasis is placed on the design, materials, and reliability of the micro VIP substrate and of the micro VIP CSP solder joints on PCB. The solder is assumed to obey Norton’s creep law. Cross-sections of samples are examined for a better understanding of the solder bump, CSP substrate redistribution, micro VIP, and solder joint. Also, the thermal cycling test results of the micro VIP CSP PCB assembly is presented.


Author(s):  
Robert N. Dean ◽  
Lauren E. Beckingham

Printed circuit board (PCB) sensors are a sensor technology where the layout of traces on a PCB has been optimized so that the traces electromagnetically interact with the surrounding environment. These types of sensors can be manufactured at very low cost using standard commercially available low-cost printed circuit board fabrication. Exposed conductive electrodes on the circuit board are useful for measuring the electrical conductivity of the surrounding environment, and these sensors have been used in applications such as salinity measurement and dissolved ion content measurement of aqueous solutions. Insulated interdigitated electrode sensors are useful for capacitively analyzing the surrounding environment, and these sensors have been used to detect the presence of liquid water and to measure the moisture content of substances in physical contact with the sensor. Additionally, by measuring the complex impedance of the capacitive sensor over a wide frequency range, information concerning the chemical composition of the substance in contact with the sensor can be determined. In addition to conducive and capacitive PCB sensors, the third type of PCB sensor would be an inductive sensor. Although it is challenging to realize 3D coils in PCB technology, planar inductors can be realized in a single Cu layer on a PCB, and insulated from the environment using a cover layer of polymeric solder mask. This type of electrode structure can inductively couple with magnetic materials in close proximity to the sensor. A variety of magnetic materials exist, including iron, nickel and cobalt. Additionally, many alloys of these elements are also magnetic. Of particular interest are corrosion products with magnetic properties, such as iron(III) oxide, Fe3O2, also known as common rust. A thin layer of iron(III) oxide powder deposited on the sensor's active area results in a measureable increase in the sensor's inductance. As such, an inductive PCB sensor could be a low-cost option for detecting the presence of some corrosion products in its operating environment.


Sign in / Sign up

Export Citation Format

Share Document