Application of BIM Technology and Intelligent Control Computer System in the Construction of High-speed Railway Track Engineering

Author(s):  
Lili Zhou
2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


2021 ◽  
Vol 27 (4) ◽  
pp. 04021030
Author(s):  
Xiaohui Wang ◽  
Jianwei Yang ◽  
Jinhai Wang ◽  
Yanxue Wang ◽  
Fu Liu

2018 ◽  
Vol 8 (5) ◽  
pp. 667 ◽  
Author(s):  
Song Liu ◽  
Jun Yang ◽  
Xianhua Chen ◽  
Guotao Yang ◽  
Degou Cai

Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 87-98
Author(s):  
Haiyan Li ◽  
Zhiwu Yu ◽  
Jianfeng Mao ◽  
Lizhong Jiang

2019 ◽  
Vol 9 (16) ◽  
pp. 3345 ◽  
Author(s):  
Chen ◽  
Qin ◽  
Xia ◽  
Bao ◽  
Huang ◽  
...  

The dimension detection of high-speed railway track slabs is one of the most important tasks before the track slabs delivery. Based on the characteristics of a 3D scanner which can acquire a large amount of measurement data continuously and rapidly in a short time, this paper uses the integration of 3D scanner and the intelligent robot to detect the CRTSIII (China Railway Track System) track slab supporting block plane, then the dense and accurate supporting block plane point cloud data is obtained, and the point cloud data is registered with the established model. An improved Random Sample Consensus (RANSAC) plane fitting algorithm is also proposed to extract the data of supporting block plane point cloud in this paper. The detection method is verified and the quality analysis of the detection results is assessed by a lot of real point cloud data obtained on site. The results show that the method can meet the quality control of CRTSIII finished track slab and the detection standard. Compared with the traditional detection methods, the detection method proposed in this paper can complete the detection of a track slab in 7 min, which greatly improves the detection efficiency, and has better reliability. The method has wide application prospects in the field of railway component detection.


2020 ◽  
Vol 10 (6) ◽  
pp. 1980 ◽  
Author(s):  
Lei Zhao ◽  
Ling-Yu Zhou ◽  
Guang-Chao Zhang ◽  
Tian-Yu Wei ◽  
Akim D. Mahunon ◽  
...  

To study the temperature distribution in the China Railway Track System Type II ballastless slab track on a high-speed railway (HSR) bridge, a 1:4 scaled specimen of a simply-supported concrete box girder bridge with a ballastless track was constructed in laboratory. Through a rapid, extreme high temperature test in winter and a conventional high temperature test in summer, the temperature distribution laws in the track on the HSR bridge were studied, and the vertical and transverse temperature distribution trend was suggested for the track. Firstly, the extreme high temperature test results showed that the vertical temperature and the vertical temperature difference distribution in the track on HSR bridge were all nonlinear with three stages. Secondly, the extreme high temperature test showed that the transverse temperature distribution in the track was of quadratic parabolic nonlinear form, and the transverse temperature gradient in the bottom base was significantly higher than that of the other layers of the track. Thirdly, the three-dimensional temperature distribution in the track on HSR bridge was a nonlinear, three-stage surface. Furthermore, similar regularities were also obtained in the conventional high temperature test, in which the temperature span ranges were different from those of the extreme high temperature test. In addition, the conventional high temperature test also showed that under the natural environment conditions, the internal temperature gradient in the track layers changed periodically (over a period of 24 h).


Sign in / Sign up

Export Citation Format

Share Document