Position control of crane vessel during offshore installations: Using adaptive and robust control methods

Author(s):  
Jun Ye ◽  
Milinko Godjevac ◽  
Ehab el Amam
2014 ◽  
Vol 5 (2(71)) ◽  
pp. 67
Author(s):  
Анатолий Васильевич Усов ◽  
Елена Наиловна Богданова

2020 ◽  
Vol 10 (13) ◽  
pp. 4494 ◽  
Author(s):  
Lijun Feng ◽  
Hao Yan

This paper focuses on high performance adaptive robust position control of electro-hydraulic servo system. The main feature of the paper is the combination of adaptive robust algorithm with discrete disturbance estimation to cope with the parametric uncertainties, uncertain nonlinearities, and external disturbance in the hydraulic servo system. First of all, a mathematical model of the single-rod position control system is developed and a nonlinear adaptive robust controller is proposed using the backstepping design technique. Adaptive robust control is used to encompass the parametric uncertainties and uncertain nonlinearities. Subsequently, a discrete disturbance estimator is employed to compensate for the effect of strong external disturbance. Furthermore, a special Lyapunov function is formulated to handle unknown nonlinear parameters in the system state equations. Simulations are carried out, and the results validate the superior performance and robustness of the proposed method.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 283 ◽  
Author(s):  
Jinyoung Yoon ◽  
Cheolhee Kim ◽  
Sehun Rhee

Friction stir welding is a preferred solid state welding process for Al/Fe joints, and in friction stir lap welding, the plunge depth is the most critical parameter for joint strength. We compared three plunge depth control methods, namely conventional position control, offset position control, and deflection compensation control in the friction stir lap welding of 3 mm-thick Al 5083-O alloy over 1.2 mm-thick DP 590 steel. The desired plunge depth was 0.2 mm into the steel sheet. However, the pin did not reach the steel surface under conventional position control due to deflection of the vertical axis of the welding system. In offset position control, an additional offset of 0.35 mm could achieve the desired plunge depth with considerable accuracy. Nevertheless, a gradual increase of the plunge depth along the longitudinal direction was unavoidable, due to an in-situ decrease of the material yield strengths. In deflection compensation control, the deflection is estimated by the coaxially measured plunging force and the force-deflection relationship, and then corrected by feedback control. Thus, the plunge depth is stabilized along the longitudinal direction and is precisely controlled with a 3.3-μm standard deviation of error during the tool traverse phase. There is also a consistent bias of 32 μm caused by the resolution of the measuring system, and it can be easily calibrated in the feedback control system.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shanshan Du ◽  
Heping Chen ◽  
Yong Liu ◽  
Runting Hu

Currently, a bottleneck problem for battery-powered microflying robots is time of endurance. Inspired by flying animal behavior in nature, an innovative mechanism with active flying and perching in the three-dimensional space was proposed to greatly increase mission life and more importantly execute tasks perching on an object in the stationary way. In prior work, we have developed some prototypes of flying and perching robots. However, when the robots switch between flying and perching, it is a challenging issue to deal with the contact between the robot and environment under the traditional position control without considering the stationary obstacle and external force. Therefore, we propose a unified impedance control approach for bioinspired flying and perching robots to smoothly contact with the environment. The dynamic model of the bioinspired robot is deduced, and the proposed impedance control method is employed to control the contact force and displacement with the environment. Simulations including the top perching and side perching and the preliminary experiments were conducted to validate the proposed method. Both simulation and experimental results validate the feasibility of the proposed control methods for controlling a bioinspired flying and perching robot.


2006 ◽  
Vol 39 (16) ◽  
pp. 301-306
Author(s):  
Aline De Greef ◽  
Thomas Delwiche ◽  
Laurent Catoire ◽  
Michel Kinnaert

Sign in / Sign up

Export Citation Format

Share Document