A Fog Computing Framework for Quality of Service Optimisation in the Internet of Things (IoT) Ecosystem

Author(s):  
William Tichaona Vambe ◽  
Khulumani Sibanda
2020 ◽  
Vol 3 (1) ◽  
pp. 22-40 ◽  
Author(s):  
William Tichaona Vambe ◽  
Chii Chang ◽  
Khulumani Sibanda

With the advent of the paradigm of the Internet of Things, many computing elements need many modifications to promote Quality of Service (QoS). Quality of Service is a pillar that promotes real-time reaction to time-critical tasks. Any impediments to QoS should be resolved and handled. In 2012, fog computing was implemented to enhance QoS in current systems in a bid to tackle QoS problems encountered by using cloud computing alone. Currently, the primary focus in fog computing is now on enhancing QoS. The primary goal of this study is, therefore, to critically review and evaluate the literature on the work done to improve elements of QoS in fog computing. This study begins by examining the roots of history, characteristics, and advantages of fog computing. Secondly, it discusses the important elements of QoS parameters. Finally, open problems that still affect fog computing are identified and discussed in order to achieve enhanced QoS.


2020 ◽  
Vol 16 (1) ◽  
pp. 19-24
Author(s):  
Pether V B Romony ◽  
Lanny Sitanayah ◽  
Junaidy B Sanger

Asap rokok adalah salah satu asap beracun yang berbahaya bagi kesehatan manusia dari sisi biologis maupun sisi kimiawi. Pada penelitian ini, penulis mengimplementasikansebuah sistem deteksi asap rokok berbasis The Internet of Things menggunakan sensor MQ135, Arduino board dan NodeMCU. Kemudian, penulis melakukan perbandingan Quality of Service dari dua protokol komunikasi data, yaitu Transmission Control Protocol dan User Datagram Protocol pada sistem tersebut. Parameter Quality of Service yang dibandingkan saat proses pengiriman data adalah delay dan data loss. Untuk setiap protokol, simulasi dilakukan selama 1 jam dengan pengiriman data setiap 5 detik, 10 detik, sampai 1 menit. Hasil yang diperoleh adalah data loss dengan Transmission Control Protocol lebih rendah dari pada data loss dengan User Datagram Protocol, sedangkan delay dengan User Datagram Protocol lebih rendah dari pada delay dengan Transmission Control Protocol.


2019 ◽  
Vol 2 (2) ◽  
pp. 13-43
Author(s):  
Ashish Tiwari ◽  
Rajeev Mohan Sharma

Fog Computing provides resources as a service. Various providers are providing the best form of Quality of Services (QoS) which works in the principal of pay per use. Now it is important to connect the Internet of Things (IoT) services in fog computing. The strategy for choosing a service provider is assessed by which cloud provider provides what.


Author(s):  
Elmustafa Sayed Ali Ahmed ◽  
Zahraa Tagelsir Mohammed ◽  
Mona Bakri Hassan ◽  
Rashid A. Saeed

Internet of vehicles (IoV) has recently become an emerging promising field of research due to the increasing number of vehicles each day. It is a part of the internet of things (IoT) which deals with vehicle communications. As vehicular nodes are considered always in motion, they cause frequent changes in the network topology. These changes cause issues in IoV such as scalability, dynamic topology changes, and shortest path for routing. In this chapter, the authors will discuss different optimization algorithms (i.e., clustering algorithms, ant colony optimization, best interface selection [BIS] algorithm, mobility adaptive density connected clustering algorithm, meta-heuristics algorithms, and quality of service [QoS]-based optimization). These algorithms provide an important intelligent role to optimize the operation of IoV networks and promise to develop new intelligent IoV applications.


Author(s):  
Ashish Tiwari ◽  
Rajeev Mohan Sharma

Fog Computing provides resources as a service. Various providers are providing the best form of Quality of Services (QoS) which works in the principal of pay per use. Now it is important to connect the Internet of Things (IoT) services in fog computing. The strategy for choosing a service provider is assessed by which cloud provider provides what.


2021 ◽  
Vol 10 (12) ◽  
pp. 148-161
Author(s):  
Mauricio Orlando Bermúdez Amaya ◽  
Octavio José Salcedo Parra ◽  
Juan Pablo Rodríguez Miranda

Machine-to-Machine M2M   technology   being a specific discourse universe of the Internet of Things IoT for the connectivity of intelligent devices, the support of said environment requires a basic conceptual scheme; for which the present article, proposes an evaluation about the different ontological models that consider the M2M and the IoT in simultaneous, recognizing the syntactic and semantic capacity of the interoperability of such devices, from the study of the basic schemes in mention, and identifying its most outstanding properties according to the Quality of Service QoS metric, obtaining the oneM2M ontology as the most appropriate.


Author(s):  
Ganesh Khekare ◽  
Pushpneel Verma ◽  
Urvashi Dhanre ◽  
Seema Raut ◽  
Ganesh Yenurkar

The internet of things (IoT) is transpiring technology. In the last decade, demand of IoT has been increased due to various things like the use of smart devices; increased demand for voice-based services; the concept of smart cities has been evolved; more requirements of processed data in fields of artificial intelligence and machine learning; fog computing, deep learning, etc. IoT is expected to reach the milestone of 30 billion IoT units at the end of the year 2020. Internet of things is the network of statutory things like houses, private companies, automobiles, and various objects integrated with sensors, actuators, software, electronic equipment, and internet availability that provides the facility to devices to interchange their data. The main contribution of this article is to provide state of art about the characteristics, functionalities, and challenges of the internet of things and the journey of IoT right from start to how it will make an impact on people's quality of life throughout the world in the near future.


Sign in / Sign up

Export Citation Format

Share Document