Traffic Modeling with Bernoulli Shift Map

Author(s):  
Fei Ge ◽  
Liansheng Tan ◽  
Yuanni Wang
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Jen Sun ◽  
Fan Bai ◽  
An-Chi Luo ◽  
Xiang-Yu Zhuang ◽  
Tsai-Shun Lin ◽  
...  

AbstractThe dynamic assembly of the cell wall is key to the maintenance of cell shape during bacterial growth. Here, we present a method for the analysis of Escherichia coli cell wall growth at high spatial and temporal resolution, which is achieved by tracing the movement of fluorescently labeled cell wall-anchored flagellar motors. Using this method, we clearly identify the active and inert zones of cell wall growth during bacterial elongation. Within the active zone, the insertion of newly synthesized peptidoglycan occurs homogeneously in the axial direction without twisting of the cell body. Based on the measured parameters, we formulate a Bernoulli shift map model to predict the partitioning of cell wall-anchored proteins following cell division.


2021 ◽  
Author(s):  
Nisar Ahmad ◽  
Muhammad Usman Younus ◽  
Muhammad Rizwan Anjum ◽  
Gulshan Saleem ◽  
Zaheer Ahmed Gondal ◽  
...  

Abstract Digital data must be compressed and encrypted to maintain confidentiality and efficient bandwidth usage. These two parameters are essential for information processing in most communication systems. Image compression and encryption may result in reduced restoration quality and degraded performance. This study attempts to provide a compression and encryption scheme for digital data named as Secure-JPEG. This scheme is built on the JPEG compression format, the most widely used lossy compression scheme. It extends the standard JPEG compression algorithm to encrypt data during compression. Secure-JPEG scheme provides encryption along with the process of compression, and it could be altered easily to provide lossless compression. On the other hand, the lossless compression provides less compression ratio and is suitable only in specific scenarios. The paper address the problem of security lacks due to the use of a simple random number generator which can not be cryptographically secure. The improved security characteristics are provided through Generalized Bernoulli Shift Map, which has a chaotic system with demonstrated security. The algorithm's security is tested by several cryptographic tests and the chaotic system’s behavior is also analyzed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zujie Bie ◽  
Qi Han ◽  
Chao Liu ◽  
Junjian Huang ◽  
Lepeng Song ◽  
...  

Wolfram divided the 256 elementary cellular automata rules informally into four classes using dynamical concepts like periodicity, stability, and chaos. Rule 24, which is Bernoulliστ-shift rule and is member of Wolfram’s class II, is said to be simple as periodic before. Therefore, it is worthwhile studying dynamical behaviors of four rules, whether they possess chaotic attractors or not. In this paper, the complex dynamical behaviors of rule 24 of one-dimensional cellular automata are investigated from the viewpoint of symbolic dynamics. We find that rule 24 is chaotic in the sense of both Li-Yorke and Devaney on its attractor. Furthermore, we prove that four rules of global equivalenceε52of cellular automata are topologically conjugate. Then, we use diagrams to explain the attractor of rule 24, where characteristic function is used to describe the fact that all points fall into Bernoulli-shift map after two iterations under rule 24.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Qi Han ◽  
Xiaofeng Liao ◽  
Chuandong Li

Wolfram divided the 256 elementary cellular automata rules informally into four classes using dynamical concepts like periodicity, stability, and chaos. Rule 14, which is Bernoulliστ-shift rule and is a member of Wolfram’s class II, is said to be simple as periodic before. Therefore, it is worthwhile studying dynamical behaviors of rule 14, whether it possesses chaotic attractors or not. In this paper, the complex dynamical behaviors of rule 14 of one-dimensional cellular automata are investigated from the viewpoint of symbolic dynamics. We find that rule 14 is chaotic in the sense of both Li-Yorke and Devaney on its attractor. Then, we prove that there exist fixed points in rule 14. Finally, we use diagrams to explain the attractor of rule 14, where characteristic function is used to describe that all points fall into Bernoulli-shift map after two iterations under rule 14.


2006 ◽  
Vol 16 (11) ◽  
pp. 3369-3381 ◽  
Author(s):  
J. A. GONZÁLEZ ◽  
A. J. MORENO ◽  
L. E. GUERRERO

We generalize the exact solution to the Bernoulli shift map. Under certain conditions, the generalized functions can produce unpredictable dynamics. We use the properties of the generalized functions to show that certain dynamical systems can generate random dynamics. For instance, the chaotic Chua's circuit coupled to a circuit with a noninvertible I–V characteristic can generate unpredictable dynamics. In general, a nonperiodic time-series with truncated exponential behavior can be converted into unpredictable dynamics using noninvertible transformations. Using a new theoretical framework for chaos and randomness, we investigate some classes of coupled map lattices. We show that, in some cases, these systems can produce completely unpredictable dynamics. In a similar fashion, we explain why some well-known spatiotemporal systems have been found to produce very complex dynamics in numerical simulations. We discuss real physical systems that can generate random dynamics.


2018 ◽  
Author(s):  
Aboutaib Brahim ◽  
Bahili Lahoucine ◽  
Fonlupt Cyril ◽  
Virginie Marion ◽  
Sebastiaan Verelst

Sign in / Sign up

Export Citation Format

Share Document