Optimal Upgrading Strategy for the Quality, Release Time, and Pricing for Software Vendor

Author(s):  
Shuxia Peng ◽  
Bo Li ◽  
Pengwen Hou
Keyword(s):  

In this study, once-daily porosity osmotic pump tablets (POPTs) of Glimepiride were prepared using HPMC K100M (61%), osmotic agent (30% NaCl) coated using two different coating techniques spraying and dipping methods. The coating solution composed of ethyl cellulose (7.5%) w\w in ethanol (90%), castor oil (2%) as water-insoluble plasticizer and Gingo red color (0.5% w\w). In both techniques, the coating level was adjusted to give a 10% increase in the weight of the tablets. The effect of the coating by dipping technique with an increase in the weight of tablet (10 %, 20% & 50%) was also investigated to see the effect coating level on the percentage of drug release from POPTs. The results of the in vitro release of Glimepiride from tablets coated by the spraying method showed longer release time (24 hrs) than those coated with dipping method. On the other hand, increasing the coating level by dipping method retarded the release of the drug from tablets. However, the same retardation effect on release as shown with the spraying technique was only obtained by increasing the coating level with a 50% increase in the weight of the tablet. Thus, coating by spraying is more efficient to prepare POPTs to give a continuous release of Glimepiride from once daily table with the lowest increase in the total weight of the tablet.


2021 ◽  
Vol 57 (4) ◽  
pp. 333-342
Author(s):  
Trung Huu Nguyen ◽  
Tran Nguyen Minh An ◽  
Mahboob Alam ◽  
Duc Hoai Tran ◽  
Nghi Tran ◽  
...  

The goal of the research is to develop an experimental mathematical model of pan coating process effect on the biodegradable polymer and to determine optimal process parameters. The polymer solution was conducted with phosphated di-starch phosphate, polyvinyl alcohol, and polyacrylic acid and performed as material coating for the controlled-release urea fertilizer. The image analysis method has been used to determine the particle size distribution, Sauter mean diameter of the particle and layer thickness that is novel. The central composite rotatable design has been selected to determine the regression models of the process, which described the relationship between two objective variables as layer thickness, release time with angle of pan, spray flow, and coating time. The statistical analysis results indicate the fitness of model.


2019 ◽  
Author(s):  
Priyantha Mudalige ◽  
Petko S. Kalev ◽  
Kartick Gupta ◽  
Huu Nhan Duong
Keyword(s):  

2021 ◽  
pp. 096703352098235
Author(s):  
Tomomi Takaku ◽  
Yusuke Hattori ◽  
Tetsuo Sasaki ◽  
Tomoaki Sakamoto ◽  
Makoto Otsuka

The effect of grinding on the pharmaceutical properties of matrix tablets consisting of ground glutinous rice starch (GRS) and theophylline (TH) was predicted by near infrared (NIR) spectroscopy. Ground GRS samples were prepared by grinding GRS in a planetary ball mill for 0-120 min, measured by X-ray diffractometry (XRD) and NIR, and then evaluated for crystallinity (%XRD) based on XRD profiles. Tablets containing TH (5 w/w%), ground GRS (94 w/w%), and magnesium stearate (1 w/w%) were formed by compression. Gel-forming and drug-release processes of the tablets were measured using a dissolution instrument with X-ray computed tomography (XCT). Swelling ratio (SWE) and mean drug-release time (MDT) were evaluated based on XCT and drug-release profiles, respectively. Calibration models for predicting percent %XRD, MDT, and SWE were constructed based on the NIR of ground GRS using partial least-squares. The results indicated the possibility of controlling the pharmaceutical properties of matrix tablets by altering the pre-gelatinization of GRS based on changes in their NIR spectra during the milling process.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Georgia Kontaxi ◽  
Yorgos G. Stergiou ◽  
Aikaterini A. Mouza

Over the last few years, microbubbles have found application in biomedicine. In this study, the characteristics of bubbles formed when air is introduced from a micro-tube (internal diameter 110 μm) in non-Newtonian shear thinning fluids are studied. The dependence of the release time and the size of the bubbles on the gas phase rate and liquid phase properties is investigated. The geometrical characteristics of the bubbles are also compared with those formed in Newtonian fluids with similar physical properties. It was found that the final diameter of the bubbles increases by increasing the gas flow rate and the liquid phase viscosity. It was observed that the bubbles formed in a non-Newtonian fluid have practically the same characteristics as those formed in a Newtonian fluid, whose viscosity equals the asymptotic viscosity of the non-Newtonian fluid, leading to the assumption that the shear rate around an under-formation bubble is high, and the viscosity tends to its asymptotic value. To verify this notion, bubble formation was simulated using Computational Fluid Dynamics (CFD). The simulation results revealed that around an under-formation bubble, the shear rate attains a value high enough to lead the viscosity of the non-Newtonian fluid to its asymptotic value.


2011 ◽  
Vol 19 (5) ◽  
pp. 30-36 ◽  
Author(s):  
Nicholas W.M. Ritchie

Quantifying an X-ray spectrum is the process of converting a measured spectrum into an estimate of the composition of the material from which the spectrum was collected. In a certain sense, interpreting X-ray spectra is very simple. A spectrum from even the most complex material can be thought of as a sum of spectra from the constituent elements (see Figure 1). To first approximation, if you know the spectrum for the constituent pure elements, you can estimate the spectrum for the complex material. Regardless of the software vendor or the name of the algorithm, this is the basis for quantification of all X-ray spectra.


Sign in / Sign up

Export Citation Format

Share Document