Impacts of Cross-Platform Vicarious Calibration on the Deep Blue Aerosol Retrievals for Moderate Resolution Imaging Spectroradiometer Aboard Terra

2011 ◽  
Vol 49 (12) ◽  
pp. 4877-4888 ◽  
Author(s):  
Myeong-Jae Jeong ◽  
N. C. Hsu ◽  
E. J. Kwiatkowska ◽  
B. A. Franz ◽  
G. Meister ◽  
...  
2013 ◽  
Vol 6 (11) ◽  
pp. 2989-3034 ◽  
Author(s):  
R. C. Levy ◽  
S. Mattoo ◽  
L. A. Munchak ◽  
L. A. Remer ◽  
A. M. Sayer ◽  
...  

Abstract. The twin Moderate resolution Imaging Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an extensive data set of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. The C6 aerosol data set will be created from three separate retrieval algorithms that operate over different surface types. These are the two "Dark Target" (DT) algorithms for retrieving (1) over ocean (dark in visible and longer wavelengths) and (2) over vegetated/dark-soiled land (dark in the visible), plus the "Deep Blue" (DB) algorithm developed originally for retrieving (3) over desert/arid land (bright in the visible). Here, we focus on DT-ocean and DT-land (#1 and #2). We have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to ≤ 84°) to increase poleward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence on the surface reflectance, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time, we quantified how "upstream" changes to instrument calibration, land/sea masking and cloud masking will also impact the statistics of global AOD, and affect Terra and Aqua differently. For Aqua, all changes will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. We compared preliminary data to surface-based sun photometer data, and show that C6 should improve upon C5. C6 will include a merged DT/DB product over semi-arid land surfaces for reduced-gap coverage and better visualization, and new information about clouds in the aerosol field. Responding to the needs of the air quality community, in addition to the standard 10 km product, C6 will include a global (DT-land and DT-ocean) aerosol product at 3 km resolution.


2019 ◽  
Vol 197 ◽  
pp. 02011
Author(s):  
Nataliia Borodai

Aerosol optical depth can be retrieved from measurements performed by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. The MODIS satellite system includes two polar satellites, Terra and Aqua. Each of them flies over the Pierre Auger Observatory once a day, providing two measurements of aerosols per day and covering the whole area of the Observatory. MODIS aerosol data products have been generated by three dedicated algorithms over bright and dark land and over ocean surface. We choose the Deep Blue algorithm data to investigate the distribution of aerosols over the Observatory, as this algorithm is the most appropriate one for semi-arid land of the Pierre Auger Observatory. This data algorithm allows us to obtain aerosol optical depth values for the investigated region, and to build cloud-free aerosol maps with a horizontal resolution 0.1°×0.1°. Since a suffcient number of measurements was obtained only for Loma Amarilla and Coihueco fluorescence detector (FD) sites of the Pierre Auger Observatory, a more detailed analysis of aerosol distributions is provided for these sites. Aerosols over these FD sites are generally distributed in a similar way each year, but some anomalies are also observed. These anomalies in aerosol distributions appear mainly due to some transient events, such as volcanic ash clouds, fires etc. We conclude that the Deep Blue MODIS algorithm provides more realistic aerosol optical depth values than other available algorithms.


2017 ◽  
Author(s):  
Juan Carlos Antuña-Marrero ◽  
Victoria Cachorro Revilla ◽  
Frank García Parrado ◽  
Ángel de Frutos Baraja ◽  
Albeth Rodríguez Vega ◽  
...  

Abstract. In the present study, we report the first comparison of the aerosol properties measured with sun photometer at Camagüey, Cuba, with the MODerate resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua satellites. We compared the aerosol optical depth at 550 nm (AOD) and the Ångström Exponent (AE) from the sun photometer for the period 2008 to 2014 with the same variables measured by both MODIS instruments, that are spatially and temporally coincident. The comparison includes AOD derived with both Deep Blue (DB) and Dark Target (DT) algorithms from MODIS Collection 6. The AOD derived with DT algorithm for Terra and Aqua agrees better with AOD from the sun photometer than the AOD derived with DB. Additionally there is little difference between AOD from both satellite instruments, when they are compared with sun photometer AOD, allowing to combine AOD from Terra and Aqua for more comprehensive climatological statistics. The comparison of the AE showed similar results with reports in the literature about the little skills of the current DT and DB algorithms for its retrieval. In addition, we report the comparison of the broadband AOD (BAOD) from pyrheliometer measurements located at Camagüey site and other three meteorological stations along Cuba, with AOD measurements from the sun photometer and from MODIS onboard Terra and Aqua. The comparison of the BAOD from the four sites as a whole with coincident AOD from MODIS onboard Terra and Aqua showed similar results than the ones of the comparison between the sun photometer AOD and the AOD from the two satellite instruments. In the comparison between the BAOD and the AOD at each one of the eight individual sun photometer wavelengths, the results improve in the spectral range 400 to 675 nm, with the best result at 500 nm. The BAOD typical uncertainty ranges from 0.04 to 0.06 at this band. The results from the BAOD comparisons demonstrate its reliability for characterizing AOD at sites with no sun photometer and for extending backward in time AOD estimates.


2020 ◽  
Vol 58 (3A) ◽  
pp. 124
Author(s):  
DUC LUONG NGUYEN ◽  
Thi Hieu Bui ◽  
Hoang Hiep Nguyen ◽  
Quang Trung Bui ◽  
Hoang Duong Do

Although a number of studies have extensively inter-compared the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-based aerosol optical depth (AOD) with the Aerosol Robotic Network (AERONET) ground-based AOD on both global and regional scales, almost no similar studies have been conducted for Vietnam - a humid subtropical climate region. For the first time, inter-comparison between the MODIS Terra and Aqua Collection 6.1 (C6.1) Dark Target (DT) 10 km, Deep Blue (DB) 10 km, and merged DT-DB 10 km with the AERONET AODs has been performed in different areas with different surface types and different climatic characteristics in Vietnam. Three investigated AERONET stations are Nghia Do (urban), Son La (mountainous rural), and Bac Lieu (coastal urban) with the studying periods of 2010 - 2016, 2012 - 2017, and 2010 - 2017, respectively. Our findings showed the better performances of DB algorithm than those of DT and DT-DB products in the urban area. Additionally, all MODIS AOD algorithm performed worse over the coastal area compared to those in the non-coastal areas. Generally, the ability of all the MODIS AODs to catch up the monthly-mean AERONET AODs has been expressed in this study.


2020 ◽  
Vol 13 (1) ◽  
pp. 87-92

Climatology of aerosols, their trends and classification based on the long-term Moderate Resolution Imaging Spectroradiometer (MODIS) measurements (from February 2000 to July 2015) of aerosol optical depths at 550 nm (τ550) and Angstrom exponent (α470-660) using the wavelengths of 470 and 660nm in Nairobi, Skukuza and Ilorin AERONET stations were analyzed in this work. The level-2 collection-6 Deep Blue (L2 C006 DB) of the parameters listed above from the aqua- (MYD04) and terra- (MOD04) MODIS of the study area were statistically analyzed using SPSS. To be able to understand the temporal variation in the characteristics of aerosols in the three stations and during each season separately, MODIS measurements of τ, retrieved for the study area, were compared with AERONET τ. Overall, aqua-MODIS τ corroborate the AERONET measurements well in Nairobi and Ilorin stations with underestimation of 29.80 % and overestimation of 2.90 % respectively, whereas Skukuza station has terra-MODIS τ as the best representation of the AERONET measurements with underestimation of 1.90 %. ....


2019 ◽  
Vol 11 (5) ◽  
pp. 486 ◽  
Author(s):  
Muhammad Bilal ◽  
Majid Nazeer ◽  
Janet Nichol ◽  
Zhongfeng Qiu ◽  
Lunche Wang ◽  
...  

In this study, Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) Collections 6 and 6.1 (C6 & C6.1) aerosol optical depth (AOD) retrievals with the recommended high-quality flag (QF = 3) were retrieved from Dark-Target (DT), Deep-Blue (DB) and merged DT and DB (DTB) level–2 AOD products for verification against Aerosol Robotic Network (AERONET) Version 3 Level 2.0 AOD data obtained from 2004–2014 for three sites located in the Beijing-Tianjin-Hebei (BTH) region. These are: Beijing, located over mixed bright urban surfaces, XiangHe located over suburban surfaces, and Xinglong located over hilly and vegetated surfaces. The AOD retrievals were also validated over different land-cover types defined by static monthly NDVI (Normalized Difference Vegetation Index) values obtained from the Terra-MODIS level-3 product (MOD13A3). These include non-vegetated surfaces (NVS, NDVI < 0.2), partially vegetated surfaces (PVS, 0.2 ≤ NDVI ≤ 0.3), moderately vegetated surfaces (MVS, 0.3 < NDVI < 0.5) and densely vegetated surfaces (DVS, NDVI ≥ 0.5). Results show that the DT, DB, and DTB-collocated retrievals achieve a high correlation coefficient of ~ 0.90–0.97, 0.89–0.95, and 0.86–0.95, respectively, with AERONET AOD. The DT C6 and C6.1 collocated retrievals were comparable at XiangHe and Xinglong, whereas at Beijing, the percentage of collocated retrievals within the expected error (↔EE) increased from 21.4% to 35.5%, the root mean square error (RMSE) decreased from 0.37 to 0.24, and the relative percent mean error (RPME) decreased from 49% to 27%. These results suggest significant relative improvement in the DT C6.1 product. The percentage of DB-collocated AOD retrievals ↔EE was greater than 70% at Beijing and Xinglong, whereas less than 66% was observed at XiangHe. Similar to DT AOD, DTB AOD retrievals performed well at XiangHe and Xinglong compared with Beijing. Regionally, DB C6 and C6.1-collocated retrievals performed better than DT and DTB in terms of good quality retrievals and relatively small errors. For diverse vegetated surfaces, DT-collocated retrievals reported small errors and good quality retrievals only for NVS and DVS, whereas larger errors were reported for PVS. MVS. DB contains good quality AOD retrievals over PVS, MVS, and DVS compared with NVS. DTB C6.1 collocated retrievals were better than C6 over NVS, PVS, and DVS. C6.1 is substantially improved overall, compared with C6 at local and regional scales, and over diverse vegetated surfaces.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3687
Author(s):  
Albarakat ◽  
Lakshmi

Dust storms can suspend large quantities of sand and cause haze in the boundary layer over local and regional scales. Iraq is one of the countries that is often impacted to a large degree by the occurrences of dust storms. The time between June 29 to July 8, 2009 is considered one of the worst dust storm periods of all times and many Iraqis suffered medical problems as a result. We used data from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS Surface Reflectance Daily L2G Global 1km and 500m data were utilized to calculate the Normalized Difference Dust Index (NDDI). The MYD09GA V006 product was used to monitor, map, and assess the development and spread of dust storms over the arid and semi-arid territories of Iraq. We set thresholds for NDDI to distinguish between water and/or ice cloud and ground features and dust storms. In addition; brightness temperature data (TB) from the Aqua /MODIS thermal band 31 were analyzed to distinguish sand on the land surface from atmospheric dust. We used the MODIS level 2 MYD04 deep blue 550nm Aerosol Option Depth (AOD) data that maintains accuracy even over bright desert surfaces. We found NDDI values lower than 0.05 represent clouds and water bodies, while NDDI greater than 0.18 correspond to dust storm regions. The threshold of TB of 310.5 K was used to distinguish aerosols from the sand on the ground. Approximately 75% of the territory was covered by a dust storm in July 5th 2009 due to strong and dry northwesterly winds.


1999 ◽  
Vol 38 (30) ◽  
pp. 6294 ◽  
Author(s):  
Zhengming Wan ◽  
Yulin Zhang ◽  
Xialin Ma ◽  
Michael D. King ◽  
Jeffrey S. Myers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document