Global Estimates for High-Spatial-Resolution Clear-Sky Land Surface Upwelling Longwave Radiation From MODIS Data

2016 ◽  
Vol 54 (7) ◽  
pp. 4115-4129 ◽  
Author(s):  
Jie Cheng ◽  
Shunlin Liang
2020 ◽  
Vol 12 (11) ◽  
pp. 1834
Author(s):  
Boxiong Qin ◽  
Biao Cao ◽  
Hua Li ◽  
Zunjian Bian ◽  
Tian Hu ◽  
...  

Surface upward longwave radiation (SULR) is a critical component in the calculation of the Earth’s surface radiation budget. Multiple clear-sky SULR estimation methods have been developed for high-spatial resolution satellite observations. Here, we comprehensively evaluated six SULR estimation methods, including the temperature-emissivity physical methods with the input of the MYD11/MYD21 (TE-MYD11/TE-MYD21), the hybrid methods with top-of-atmosphere (TOA) linear/nonlinear/artificial neural network regressions (TOA-LIN/TOA-NLIN/TOA-ANN), and the hybrid method with bottom-of-atmosphere (BOA) linear regression (BOA-LIN). The recently released MYD21 product and the BOA-LIN—a newly developed method that considers the spatial heterogeneity of the atmosphere—is used initially to estimate SULR. In addition, the four hybrid methods were compared with simulated datasets. All the six methods were evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Surface Radiation Budget Network (SURFRAD) in situ measurements. Simulation analysis shows that the BOA-LIN is the best one among four hybrid methods with accurate atmospheric profiles as input. Comparison of all the six methods shows that the TE-MYD21 performed the best, with a root mean square error (RMSE) and mean bias error (MBE) of 14.0 and −0.2 W/m2, respectively. The RMSE of BOA-LIN, TOA-NLIN, TOA-LIN, TOA-ANN, and TE-MYD11 are equal to 15.2, 16.1, 17.2, 21.2, and 18.5 W/m2, respectively. TE-MYD21 has a much better accuracy than the TE-MYD11 over barren surfaces (NDVI < 0.3) and a similar accuracy over non-barren surfaces (NDVI ≥ 0.3). BOA-LIN is more stable over varying water vapor conditions, compared to other hybrid methods. We conclude that this study provides a valuable reference for choosing the suitable estimation method in the SULR product generation.


2014 ◽  
Vol 6 (4) ◽  
pp. 3247-3262 ◽  
Author(s):  
Si-Bo Duan ◽  
Zhao-Liang Li ◽  
Bo-Hui Tang ◽  
Hua Wu ◽  
Ronglin Tang ◽  
...  

2012 ◽  
Vol 117 (D22) ◽  
pp. n/a-n/a ◽  
Author(s):  
Haoran Wu ◽  
Xiaotong Zhang ◽  
Shunlin Liang ◽  
Hua Yang ◽  
Gongqi Zhou

CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105304
Author(s):  
Yufeng Li ◽  
Cheng Wang ◽  
Alan Wright ◽  
Hongyu Liu ◽  
Huabing Zhang ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2211
Author(s):  
Shuo Xu ◽  
Jie Cheng ◽  
Quan Zhang

Land surface temperature (LST) is an important parameter for mirroring the water–heat exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively low. In this study, we developed a TIR and PWM LST fusion method on based the random forest (RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition, and solar radiation, these variables were selected as candidate auxiliary variables to establish the best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01° can be obtained.


Sign in / Sign up

Export Citation Format

Share Document