Direct Torque Control of Induction Motors Utilizing Three-Level Voltage Source Inverters

2008 ◽  
Vol 55 (2) ◽  
pp. 956-958 ◽  
Author(s):  
Xavier del Toro Garcia ◽  
Antoni Arias ◽  
Marcel G. Jayne ◽  
Phil A. Witting
Author(s):  
Yuri M. Inkov ◽  
Andrey S. Kosmodaminskiy ◽  
Alexander A. Pugachev ◽  
Elena V. Sachkova

The main requirements for traction electric drives are listed and discussed. The direct torque control of an induction motor electric drive is established by a survey of operation modes of traction electric drives to thoroughly satisfy the requirements for traction electric drive. The topologies and operation principles of two-and three-level voltage source inverters are presented. The advantages and shortcomings of three-level voltage source inverters to be applied on locomotive traction drives are highlighted in relation to the two-level ones. The recommendations of choice between different voltage source inverter topologies are given. The topology and principles of operation of direct torque control of induction motors with two- and three-level voltage source inverters are described. The simulation peculiarities of electric drives with direct torque control and two- and three-level inverters in Matlab are considered. The simulation results are presented. The techniques to reduce the torque oscillations are shown and implemented in Matlab Simulink.


Author(s):  
Draoui Abdelghani ◽  
Allaoua Boumediène

<span lang="EN-US">The Nine-Switch Inverter</span><span lang="EN-US">(NSI) is a recently developed dual output converter. It can be used to drive two three-phase loads independently. As a substitute to two separate conventional voltage source inverters, the NSI has been, already, proposed in various industrial applications to reduce the number</span><span lang="EN-US">of semiconductor switches and its associated energy losses and drive circuitry. On the other hand, the Direct Torque Control</span><span lang="EN-US">(DTC) is a robust control scheme of AC motors, which consist of selecting proper state vectors of a conventional voltage source inverter. The NSI, having a different working principle from the conventional voltage source inverter and taking into account the varying influence of active space vectors on motor’s torque and stator flux, a Direct Torque Control is suggested in this paper to, efficiently, drive two induction motors independently, while minimizing the torque and stator flux ripples of both motors. Simulations results confirm the effectiveness of the proposed algorithm. In addition, application of this newly proposed control scheme in operation of an Electric Vehicule</span><span lang="EN-US">(EV) is demonstrated.</span>


Author(s):  
Najib El Ouanjli ◽  
Aziz Derouich ◽  
Abdelaziz El Ghzizal ◽  
Mohammed Taoussi ◽  
Youness El Mourabit ◽  
...  

Abstract This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This control method allows to reduce the torque and flux ripples as well as to optimize the total harmonic distortion (THD) of motor currents. The use of 3LVSI increases the number of generated voltage, which allows improving the quality of its waveform and thus improves the DTC strategy. The system modeling and control are implemented in Matlab/Simulink environment. The analysis of simulation results shows the better performances of this control, especially in terms of torque and flux behavior, compared to conventional DTC.


2015 ◽  
Vol 792 ◽  
pp. 101-106 ◽  
Author(s):  
Alexander Pugachev

The advantages and shortcomings of three-level voltage source inverters to be applied on locomotive traction electric drives are highlighted in relation to two-level ones. To protect wheels from slipping on rails, the control system is designed. The control system with protection from slipping uses system of direct torque control as the subordinated contour to produce control signals on voltage source inverter. The topology and principles of operation of both protections from slipping and direct torque control of traction induction motor with three-level voltage source inverters are described. The simplified structure of mechanical part of traction drive using basic and axle suspension is considered. The adequacy of designed control system is confirmed by means of Matlab, the results of mathematical modeling show a high convergence with the results of physical model of traction drive.


Author(s):  
Jayaprakash Sabarad ◽  
G.H. Kulkarni

<p><span>This work presents a novel switching technique for five leg inverter in dual motor control. As the technology advances in industry, requirements in reducing the cost plays an important role with reliable product design. In conventional method, the six legs are used in 2- three phase Voltage Source Inverters (VSI) to control 2 motors. This proposed technique will give the improved performance of speed control for dual motor control using Five Leg Inverter (FLI). New proposed method suggests to use 5-inverter legs instead of 6-inverter legs to control 2 induction motors. New Switching technique proposed in FLI system is designed in effective way that improved performance and Total Harmonic Distortion of ~23% achieved. The load sharing on common leg is called Common Mode (CM) of operation. In this new method, closed loop control designed by using space vector pulse width modulation (SVPWM) and Direct Torque Control (DTC) in FLI Technology. With this new method smooth speed regulation is achieved when load torque is changed. THD% for CM-FLI is reduced when compared with convetional FLI technique. The new Switching technique is controlled in effective way that the common leg is not overloaded and able to drive both the induction motors independently at required speeds. Proposed switching technique verified at different operating speeds with No load and rated torque. Simulation results computed using MATLAB/SIMULINK Software. </span></p>


Sign in / Sign up

Export Citation Format

Share Document