Searching better wavelet packet tree for ISI and ICI reduction in WOFDM

Author(s):  
V. Kumbasar ◽  
O. Kucur
Keyword(s):  
2015 ◽  
Vol 3 (1) ◽  
pp. 12-16
Author(s):  
Tripti Singh ◽  
◽  
Abhishek Misal ◽  

2017 ◽  
Vol 16 (2) ◽  
pp. 116-121 ◽  
Author(s):  
Shuihua Wang ◽  
Yang Li ◽  
Ying Shao ◽  
Carlo Cattani ◽  
Yudong Zhang ◽  
...  

Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


2017 ◽  
Vol 229 (3) ◽  
pp. 1275-1295 ◽  
Author(s):  
N. Jamia ◽  
P. Rajendran ◽  
S. El-Borgi ◽  
M. I. Friswell

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 1997
Author(s):  
Hua Wang ◽  
Wenchuan Wang ◽  
Yujin Du ◽  
Dongmei Xu

Accurate precipitation prediction can help plan for different water resources management demands and provide an extension of lead-time for the tactical and strategic planning of courses of action. This paper examines the applicability of several forecasting models based on wavelet packet decomposition (WPD) in annual rainfall forecasting, and a novel hybrid precipitation prediction framework (WPD-ELM) is proposed coupling extreme learning machine (ELM) and WPD. The works of this paper can be described as follows: (a) WPD is used to decompose the original precipitation data into several sub-layers; (b) ELM model, autoregressive integrated moving average model (ARIMA), and back-propagation neural network (BPNN) are employed to realize the forecasting computation for the decomposed series; (c) the results are integrated to attain the final prediction. Four evaluation indexes (RMSE, MAE, R, and NSEC) are adopted to assess the performance of the models. The results indicate that the WPD-ELM model outperforms other models used in this paper and WPD can significantly enhance the performance of forecasting models. In conclusion, WPD-ELM can be a promising alternative for annual precipitation forecasting and WPD is an effective data pre-processing technique in producing convincing forecasting models.


Sign in / Sign up

Export Citation Format

Share Document