Bond Strength of Resin Cement and Glass Ionomer to Nd:YAG Laser‐Treated Zirconia Ceramics

2017 ◽  
Vol 28 (4) ◽  
pp. e881-e885 ◽  
Author(s):  
Nafiseh Asadzadeh ◽  
Foojan Ghorbanian ◽  
Farzaneh Ahrary ◽  
Hamidreza Rajati Haghi ◽  
Reza Karamad ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Amjad Abu Hasna ◽  
Stephanie Semmelmann ◽  
Fernanda Alves Feitosa ◽  
Danilo De Souza Andrade ◽  
Franklin R Tay ◽  
...  

This study evaluated the effect of different surface treatments on the tensile bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. Fifty truncated cone-shape glass-ceramics were divided into five groups (n = 10): G1, control: 10% hydrofluoric acid (HF); G2, Nd:YAG laser + silane; G3, Sil + Nd:YAG laser; G4, graphite + Nd:YAG laser + Sil; and G5, graphite + Sil + Nd:YAG laser. Fifty human third-molars were cut to cylindrical shape and polished to standardize the bonding surfaces. The glass-ceramic specimens were bonded to dentin with a dual-cured resin cement and stored in distilled water for 24 h at 37ºC. Tensile testing was performed on a universal testing machine (10 Kgf load cell at 1 mm/min) until failure. The bond strength values (mean ± SD) in MPa were G1 (9.4 ± 2.3), G2 (9.7 ± 2.0), G3 (6.7 ± 1.9), G4 (4.6 ± 1.1), and G5 (1.2 ± 0.3). Nd:YAG laser and HF improve the bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. The application of a graphite layer prior to Nd:YAG laser irradiation negatively affects this bonding and presented inferior results.


2017 ◽  
Vol 11 (01) ◽  
pp. 006-011 ◽  
Author(s):  
William Matthew Negreiros ◽  
Glaucia Maria Bovi Ambrosano ◽  
Marcelo Giannini

ABSTRACT Objective: The objective of this study is to evaluate the effect of a cleaning agent and priming on the bond strength (BS) of a resin cement (RC) to zirconia ceramics after 24 h and 1 year of water-storage. Materials and Methods: Fifty-six Katana and 56 ZirCAD zirconia ceramic plates were prepared and each zirconia brand was divided into four groups (n = 14): (1) untreated; (2) treated with Ivoclean cleaning agent; (3) treated with Monobond Plus coupling agent; (4) treated with Ivoclean + Monobond Plus. Cleaning and coupling agents were applied to zirconia following the manufacturers' instructions. The RC was manipulated, inserted into tubes (0.75 mm diameter/1 mm height) that were positioned on the zirconia surfaces and light activated. Specimens were tested after 24 h and 1 year of water storage. A shear load was applied to the base of the RC cylinders (until failure. Data were analyzed by three-way ANOVA and Tukey tests (α = 5%). Results: No significant difference in BS was noted between zirconia ceramics, except when the combination of cleaning and coupling agents was used. This combination increased the BS for Katana zirconia. One year of water storage leads to a decrease in BS for all experimental groups. Conclusion: The combination of cleaning agent and priming can yield higher BS for Katana at 24 h. BS to zirconia ceramics reduced approximately 50% after 1 year.


2018 ◽  
Vol 6 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Bandar M. A. Al–Makramani ◽  
Abdul A. A. Razak ◽  
Mohamed I. Abu–Hassan ◽  
Fuad A. Al–Sanabani ◽  
Fahad M. Albakri

BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.


2008 ◽  
Vol 26 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Ana Maria Spohr ◽  
Gilberto Antonio Borges ◽  
Luiz Henrique Burnett Júnior ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo Silva Oshima

2018 ◽  
Vol 29 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Arthur Magno Medeiros de Araújo ◽  
Ana Beatriz do Nascimento Januário ◽  
Dayanne Monielle Duarte Moura ◽  
João Paulo Mendes Tribst ◽  
Mutlu Özcan ◽  
...  

Abstract This study evaluated the effectiveness of a multi-mode adhesive (SBU-Scotch Bond Universal/3M) as a substitute for silica coating and silane application on the bonding of zirconia ceramics to resin cement. One-hundred and twenty sintered zirconia ceramic blocks (5 x 5 x 5 mm) were obtained, finished by grounding with silicon carbide paper (#600, #800, #1000 and #1200) and randomly divided into 12 groups (n=10) in accordance with the factors “surface treatment” (ScSi - silicatization + silanization; ScSBU - silicatization + SBU; SBU - SBU without photoactivation and SBUp - SBU photoactivated) and “ceramic” (Lava / 3M ESPE, Ceramill Zirconia / Amann Girrbach and Zirkonzahn / Zirkonzahn). Dual resin cement cylinders (RelyX Ultimate/3M ESPE) were subsequently produced in the center of each block using a silicon matrix (Ø=2 mm, h=5 mm) and photoactivated for 40 s (1200 mW/cm2). The samples were stored for 30 days in distilled water (37ºC) and submitted to shear bond strength test (1 mm/min, 100 KgF). Data (MPa) were analyzed under ANOVA (2 levels) and Tukey test (5%). Complementary analyzes were also performed. ANOVA revealed that only the factor “surface treatment” was significant (p=0.0001). The ScSi treatment (14.28A) promoted statistically higher bond strength values than the other ScSBU (9.03B), SBU (8.47B) and SBUp (7.82B), which were similar to each other (Tukey). Failure analysis revealed that 100% of the failures were mixed. The silica coating followed by the silanization promoted higher bond strength values of resin cement and ceramic, regardless of the zirconia ceramic or SBU.


2016 ◽  
Vol 4 (4) ◽  
pp. 695-699
Author(s):  
Hanaa El Attar ◽  
Omnia Elhiny ◽  
Ghada Salem ◽  
Ahmed Abdelrahman ◽  
Mazen Attia

AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement.MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons.RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement.CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.


Sign in / Sign up

Export Citation Format

Share Document