scholarly journals Effect of Nd:YAG Laser with/without Graphite Coating on Bonding of Lithium Disilicate Glass-Ceramic to Human Dentin

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Amjad Abu Hasna ◽  
Stephanie Semmelmann ◽  
Fernanda Alves Feitosa ◽  
Danilo De Souza Andrade ◽  
Franklin R Tay ◽  
...  

This study evaluated the effect of different surface treatments on the tensile bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. Fifty truncated cone-shape glass-ceramics were divided into five groups (n = 10): G1, control: 10% hydrofluoric acid (HF); G2, Nd:YAG laser + silane; G3, Sil + Nd:YAG laser; G4, graphite + Nd:YAG laser + Sil; and G5, graphite + Sil + Nd:YAG laser. Fifty human third-molars were cut to cylindrical shape and polished to standardize the bonding surfaces. The glass-ceramic specimens were bonded to dentin with a dual-cured resin cement and stored in distilled water for 24 h at 37ºC. Tensile testing was performed on a universal testing machine (10 Kgf load cell at 1 mm/min) until failure. The bond strength values (mean ± SD) in MPa were G1 (9.4 ± 2.3), G2 (9.7 ± 2.0), G3 (6.7 ± 1.9), G4 (4.6 ± 1.1), and G5 (1.2 ± 0.3). Nd:YAG laser and HF improve the bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. The application of a graphite layer prior to Nd:YAG laser irradiation negatively affects this bonding and presented inferior results.

2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Amr El-Etreby ◽  
Osama AlShanti ◽  
Gihan El-Nagar

Objective: The present study aimed to evaluate the effect of repressing and different surface treatment protocols on the shear bond strength of lithium disilicate glass-ceramics. Material and Methods: A total of 52 lithium disilicate glass-ceramic discs (IPS emax Press, Ivoclar Vivadent) were fabricated using the heat-press technique. The discs were divided into two groups; group (P): discs fabricated from new e.max ingots (n=26), group (R): discs fabricated from reused e.max buttons (n=26). Each group was subdivided into subgroup (E): discs were etched with hydrofluoric acid (9.5%) (n=13), subgroup (S): discs were air-abraded with 110 µm alumina particles. All specimens were subjected to X-ray Diffraction analysis, Scanning Electron Microscope, Energy Dispersive X-Ray, Thermo-Cycling, and Shear Bond Strength Testing. Results: Repressed Etched subgroup (RE) recorded the statistically highest shear bond strength value, followed by the Pressed Etched subgroup (PE), while the statistically lowest shear bond strength value was recorded for the Pressed Air-Abraded subgroup (PS) and Repressed Air-Abraded subgroup (RS). Conclusion: Repressing the leftover buttons for the construction of new lithium disilicate glass-ceramic restorations has no adverse effect on the bond strength of the resin cement to the ceramic. Hydrofluoric acid surface treatment improves the shear bond strength and durability of resin cement bond to both pressed and repressed lithium disilicate glass-ceramic. Air-abrasion cannot be considered as a reliable surface treatment when bonding to lithium disilicate glass-ceramics. Keywords Heat pressed; Lithium disilicate glass-ceramics; Repressing; Shear bond strength; Surface treatment.


2017 ◽  
Vol 42 (6) ◽  
pp. 606-615 ◽  
Author(s):  
J Puppin-Rontani ◽  
D Sundfeld ◽  
AR Costa ◽  
AB Correr ◽  
RM Puppin-Rontani ◽  
...  

SUMMARY The aim of this study was to evaluate the influence of different concentrations of hydrofluoric acid (HF) associated with varied etching times on the microshear bond strength (μSBS) of a resin cement to a lithium disilicate glass ceramic. Two hundred seventy-five ceramic blocks (IPS e.max Press [EMX], Ivoclar Vivadent), measuring 8 mm × 3 mm thickness, were randomly distributed into five groups according to the HF concentrations (n=50): 1%, 2.5%, 5%, 7.5%, and 10%. Further random distribution into subgroups was performed according to the following etching times (n=10): 20, 40, 60, 120, and 20 + 20 seconds. After etching, all blocks were treated with a silane coupling agent followed by a thin layer of an unfilled resin. Three resin cement cylinders (∅︀=1 mm) were made on each EMX surface, which was then stored in deionized water at 37°C for 24 hours before testing. The μSBS was in a universal testing machine at a crosshead speed of 1 mm/min until failure. Data were submitted to two-way analysis of variance, and multiple comparisons were performed using the Tukey post hoc test (α=0.05). One representative EMX sample was etched according to the description of each subgroup and evaluated using scanning electron microscopy for surface characterization. The HF concentrations of 5%, 7.5%, and 10% provided significantly higher μSBS values than 1% and 2.5% (p<0.05), regardless of the etching times. For 1% and 2.5% HF, the etching times from 40 to 120 seconds increased the μSBS values compared with 20 seconds (p<0.05), but etching periods did not differ within the 5%, 7.5%, and 10% HF groups (p>0.05). The effect of re-etching was more evident for 1% and 2.5% HF (p<0.05). Different HF concentrations/etching times directly influenced the bond strength and surface morphology of EMX.


2016 ◽  
Vol 27 (6) ◽  
pp. 727-733 ◽  
Author(s):  
Daniel Sundfeld ◽  
Lourenço Correr-Sobrinho ◽  
Núbia Inocêncya Pavesi Pini ◽  
Ana Rosa Costa ◽  
Renato Herman Sundfeld ◽  
...  

Abstract The aim of this study was to evaluate the effects of hydrofluoric acid (HF) concentration and previous heat treatment (PHT) on the surface morphology and micro-shear bond strength (mSBS) of a lithium disilicate glass ceramic (EMX) to resin cement. One hundred four EMX specimens were randomly assigned to two groups (n=52) according to the HF concentration: 5% and 10%. A new random distribution was made according to the PHTs (n=13): control (no PHT); previously heated HF (70 °C); previously heated EMX surface (85 °C); the combination of heated HF + heated EMX surface. The etching time was set at 20 s. All EMX blocks were silanated and received a thin layer of an unfilled resin. Five resin cement cylinders were made on each EMX surface using Tygon tubes as matrices, and then stored for 24 h at 37 °C. One random etched EMX sample from each group was analyzed using field-emission scanning electron microscopy (FE-SEM). The data were subjected to two-way ANOVA and multiple comparisons were performed using the Tukey post hoc test (a=0.05). For the control groups, 5% HF showed statistically lower mSBS values when compared to 10% HF (p<0.05). PHT increased the mSBS values for 5% HF, yielding statistically similar results to non-PHT 10% HF (p<0.05). FE-SEM images showed increased glassy matrix removal when PHT was applied to HF 5%, but not to the same degree as for 10% HF. PHT has the potential to improve the bond strength of 5% HF concentration on lithium disilicate glass ceramic.


2011 ◽  
Vol 492 ◽  
pp. 18-23
Author(s):  
Xin Yi Zhao ◽  
Shi Bao Li ◽  
Xu Gong

To evaluate the effects of specimen grips on the measurement of the micro-tensile bond strength (mTBS) to dentin. Methods: Twelve extracted human molars were sectioned to expose mid-coronal dentin. Each surface was ground with 600-grit SiC paper. Four adhesives: Prime & Bond NT (Dentsply, USA), Contex (DMG, German), Adper Prompt (3M/ESPE, USA) and Clearfil S3Bond (Kuraray, Japan) were applied to the polished surfaces followed by creation of composite buildups. After 24 hr storage in 37°C water, the teeth were sectioned perpendicular to the adhesive interface to produce multiple beams of composite-bonded dentin, approximately 0.8 mm2in cross-sectioned area. Half of the specimens were attached to testing grips A which did not contain positioning pins and another half were attached to the testing grips B which contained positioning pins. All specimens were tested using a universal testing machine at a crosshead speed of 1.0 mm/min. Results: Specimens tested using the grips A presented lower mTBS than using the grips B (P<0.01). Many specimens tested using the grips A showed mix failure or cohesive failure within composite, and most of the failures were adhesive for specimens tested using the grips A. Conclusion: Specimen grips without positioning pins cannot accurately present mTBS and the grips with positioning pins can more accurately present mTBS.


2017 ◽  
Vol 16 ◽  
pp. 1-7
Author(s):  
Bruna Genari ◽  
Vicente Castelo Branco Leitune ◽  
João Henrique Macedo Saucedo ◽  
Susana Maria Werner Samuel ◽  
Fabrício Mezzomo Collares

Self-adhesive, dual-polymerizing resin cements require no treatment to the prepared tooth surfaces before cementation. Aim: The aim of this study was to evaluate the influence of curing mode on bond strength (BS) of three cementing systems to bovine dentin. Methods: The buccal enamel surfaces of 50 bovine incisors were removed to expose dentin and to flat the surface. The teeth were divided into five groups (n=10), which consisted of two resin cements (Multilink and Clearfil SA Cement) that were tested in dual- (halogen light for 40 s) and self-cured modes, and a control (RelyX ARC). Two cylinders of resin cements (1.0 mm X 0.75 mm) were prepared on each bonded dentin surface. After 24h at 37oC, resin cylinders were subjected to micro-shear testing in a universal testing machine (4411/Instron - 0.5 mm/min). Data were statistically analyzed by two-way ANOVA, Tukey and Dunnett`s test (5%). Results: Multilink showed higher BS than those observed on Clearfil SA. Light-curing resulted in higher BS for both Multilink and Clearfil SA. When Multilink was light-cured, no significant difference on BS was demonstrated between it and RelyX ARC. Conclusions: The highest BS values were obtained in control group and light-cured Multilink resin cement.


Author(s):  
Siripan Simasetha ◽  
Awiruth Klaisiri ◽  
Tool Sriamporn ◽  
Kraisorn Sappayatosok ◽  
Niyom Thamrongananskul

Abstract Objective The study aimed to evaluate the shear bond strength (SBS) of lithium disilicate glass-ceramic (LDGC) and resin cement (RC) using different surface treatments. Materials and Methods LDGC blocks (Vintage LD Press) were prepared, etched with 4.5% hydrofluoric acid, and randomly divided into seven groups (n = 10), depending on the surface treatments. The groups were divided as follows: 1) no surface treatment (control), 2) Silane Primer (KS), 3) Signum Ceramic Bond I (SGI), 4) Signum Ceramic Bond I/Signum Ceramic Bond II (SGI/SGII), 5) experimental silane (EXP), 6) experimental silane/Signum Ceramic Bond II (EXP/SGII), and 7) Experimental/Adper Scotchbond Multi-purpose Adhesive (EXP/ADP). The specimens were cemented to resin composite blocks with resin cement and stored in water at 37 °C for 24 hours. The specimens underwent 5,000 thermal cycles and were subjected to the SBS test. Mode of failure was evaluated under the stereo microscope. Statistical Analysis Data were analyzed with Welch ANOVA and Games-Howell post hoc tests (α = 0.05). Results The highest mean SBS showed in group EXP/ADP (45.49 ± 3.37 MPa); however, this was not significantly different from group EXP/SGII (41.38 ± 2.17 MPa) (p ≥ 0.05). The lowest SBS was shown in the control group (18.36 ± 0.69 MPa). This was not significantly different from group KS (20.17 ± 1.10 MPa) (p ≥ 0.05). Conclusions The different surface treatments significantly affected the SBS value between LDGC and RC. The application of pure silane coupling agent with or without the application of an adhesive improved the SBS value and bond quality.


2016 ◽  
Vol 17 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Cristina Parise Gré ◽  
Renan C de Ré Silveira ◽  
Shizuma Shibata ◽  
Carlo TR Lago ◽  
Luiz CC Vieira

ABSTRACT Aim This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. Materials and methods A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm2 and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games–Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40× magnification. Results Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Conclusion Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Clinical significance Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic. How to cite this article Gré CP, de Ré Silveira RC, Shibata S, Lago CTR, Vieira LCC. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic. J Contemp Dent Pract 2016;17(2):149-153.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yoon Lee ◽  
Jae-Hoon Kim ◽  
Jung-Soo Woo ◽  
Young-Ah Yi ◽  
Ji-Yun Hwang ◽  
...  

Objective. To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive.Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n=16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, andμSBS was evaluated with/without thermocycling. TheμSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM).Results. Without thermocycling,μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P<0.05). Thermocycling significantly reducedμSBS in SBU (22.49 MPa ± 4.11) (P<0.05), but not in NC (20.68 MPa ± 4.60) and PC (28.77 MPa ± 3.52) (P>0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively.Conclusion. SBU treatment improvesμSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowestμSBS, which remained unchanged after thermocycling.


2003 ◽  
Vol 11 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Osvaldo Daniel Andreatta Filho ◽  
Marco Antonio Bottino ◽  
Renato Sussumu Nishioka ◽  
Luiz Felipe Valandro ◽  
Fabíola Pessoa Pereira Leite

The aim of the present study was to evaluate the effect of thermocycling on the bond strength between the surface of the glass-infiltrated alumina ceramic In-Ceram (VITA) and the Panavia F resin cement (Kuraray CO.). Four 5x6x6mm In-Ceram blocks were obtained. One of the 6x6mm faces of each block was conditioned with Cojet - System (tribochemical silica coating, ESPE-3M) and then luted under a constant 750g pressure with Panavia F cement to another identical face of a resin composit block (Clearfil AP-X, Kuraray) obtained by reproduction of the ceramic one from Express (3M) addition curing silicone impressions. The four sets so formed by ceramic, luting cement and resin have been each one serially sectioned in 20 sticks so that the adhesive surface in each presented 1mm² of area. The samples were divided in 2 groups (n=10): G1- stored for 7 days in deionized water at 36 ± 2ºC; G2 - thermocycled 1500 times between 5 and 55ºC dwell times. The microtensile tests were accomplished in an universal testing machine (EMIC) at a crosshead speed of 0,5 mm/min. The results showed that the mean tensile bond strength values (MPa) for the group G2: (22,815 ± 5,254) had not statistically differ of the values of group G1: (25,628 ± 3,353) (t = 1,427; gl = 18; p-value = 0,171), at the level of a= 5%. It can be concluded that the thermocycling technique used in the present experiment had not produced statistically significant differences between the bond strength results of the specimens obtained by the two used techniques.


2005 ◽  
Vol 13 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Osvaldo Daniel Andreatta Filho ◽  
Maria Auxiliadora Junho de Araújo ◽  
Marco Antonio Bottino ◽  
Renato Sussumu Nishioka ◽  
Marcia Maciel Menezes

This study evaluated the effect of thermocycling on the bond strength between Procera AllCeram (Nobel-Biocare) and a resin cement (Panavia F, Kuraray CO). Nine ceramic blocks with dimensions of 5x6x6mm were conditioned at one face with Rocatec System (Espe). After, they were luted with Panavia F to composite resin blocks (Clearfil AP-X, Kuraray CO). The nine groups formed by ceramic, cement and composite resin were split up obtaining 75 samples with dimensions of 12x1x1mm and adhesive surface presenting 1mm²±0.1mm² of area. The samples were divided into 3 groups (n=25): G1 - 14 days in distilled water at 37ºC; G2 - 6,000 cycles in water (5ºC - 55ºC - 30s); G3 - 12,000 cycles in water (5ºC - 55ºC - 30s). The samples were tested in a universal testing machine (EMIC) at a crosshead speed of 1mm/min. Data were analyzed by ANOVA and Tukey tests. The results indicated that mean values of rupture tension (MPa) of G1 (10.71 ± 3.54) did not differ statistically (p <5%) from G2 (9.01 ± 3.90), however there was statistical difference between G1 and G3 (7.28 ± 3.00). It was concluded that thermocycling significantly reduced the bond strength values when samples were submitted to 12,000 cycles.


Sign in / Sign up

Export Citation Format

Share Document