Model-Based Prediction of Nephropathia Epidemica Outbreaks Based on Climatological and Vegetation Data and Bank Vole Population Dynamics

2012 ◽  
Vol 60 (7) ◽  
pp. 461-477 ◽  
Author(s):  
S. Amirpour Haredasht ◽  
C. J. Taylor ◽  
P. Maes ◽  
W. W. Verstraeten ◽  
J. Clement ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0134124 ◽  
Author(s):  
Daniela Reil ◽  
Christian Imholt ◽  
Jana Anja Eccard ◽  
Jens Jacob

Author(s):  
I. M. Grod ◽  
I. V. Zagorodniuk ◽  
L. O. Shevchyk ◽  
N. Ya. Kravets

Monitoring and predicting the dynamics of abundance of species living in natural habitats is an important component stability analysis of ecosystem as well as dynamics and direction of change of biotic communities under global climate change and pressure of the alien species. The aim of the work was to build a matrix model and study the state of stabilisation of the dynamics of the bank vole population within the Leslie model. The object of the study was the population dynamics of Myodes glareolus Schreber, 1780 = Clethrionomys glareolus auct. The study is based on materials obtained during 2017–2019. This period covered one phase of the long-term population dynamics of the bank vole, named “population growth”. The research was carried out according to generally accepted methods. A total of 6400 trap-days were processed, and 358 forest fistulas were collected and studied. The intensity of harmful activity of rodents is due to the variability of the number of animals in the population. The quantitative population changes are the result of three factors: births, deaths, and migrations. The main condition for the existence of the species is the stability of the population, which is determined by the action of thecompensatory mechanisms. The growth phase of the bank vole lasted all three years of the research, the quantitative indicators were respectively: 2017 – 1.8 individuals per 100 trap-days; 2018 – 2.0 individuals per 100 trap-days; 2019 – 2.7 individuals per 100 trap-days. Low levels of the abundance in the spring of each year of the study, namely at the beginning of the breeding season (3.7 – 2.6 – 8.9 individuals per 100 trap-days). Favourable for the abundance growth was the sex ratio of the population (approximately 1:1), with some rise in the share of females, which decreases on the period of spring 2018 to autumn 2019). Some decrease in the share of immature individuals (4.5 – 3.9 – 3.1 %) is an indirect confirmation of the stability of puberty of animals with subsequent replenishment of the "stock", which led to accelerated reproduction and, consequently, provided prerequisites for further population growth. The causal mechanisms of population control established by us, without a doubt, can serve as a basis for further prognosis, of the number of pests in natural habitats. To predict population changes, the Leslie model, which is widely used in mathematical analyses of the abundance of both plant and animal groups, was chosen. The algorithm for building a matrix model, detailed in the article, has five following steps. The exponential nature of the actual and projected growth of the bank vole population during the five-year cycle (2017–2019 with a prognosis until 2023) revealed in the analysis can be explained not so much by the power of the species' reproductive potential as by the lack of the significant changes in habitat, caused by constant weather conditions, low individual mortality from predators and non-communicable diseases or other accidents. The application of the matrix model allowed to confirm the key role of the main compensatory mechanisms of population dynamics, as they contribute to the stabilisation of the population and, as a consequence, are an important condition for the existence of the species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahdi Aminikhah ◽  
Jukka T. Forsman ◽  
Esa Koskela ◽  
Tapio Mappes ◽  
Jussi Sane ◽  
...  

AbstractZoonotic diseases, caused by pathogens transmitted between other vertebrate animals and humans, pose a major risk to human health. Rodents are important reservoir hosts for many zoonotic pathogens, and rodent population dynamics affect the infection dynamics of rodent-borne diseases, such as diseases caused by hantaviruses. However, the role of rodent population dynamics in determining the infection dynamics of rodent-associated tick-borne diseases, such as Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato bacteria, have gained limited attention in Northern Europe, despite the multiannual abundance fluctuations, the so-called vole cycles, that characterise rodent population dynamics in the region. Here, we quantify the associations between rodent abundance and LB human cases and Puumala Orthohantavirus (PUUV) infections by using two time series (25-year and 9-year) in Finland. Both bank vole (Myodes glareolus) abundance as well as LB and PUUV infection incidence in humans showed approximately 3-year cycles. Without vector transmitted PUUV infections followed the bank vole host abundance fluctuations with two-month time lag, whereas tick-transmitted LB was associated with bank vole abundance ca. 12 and 24 months earlier. However, the strength of association between LB incidence and bank vole abundance ca. 12 months before varied over the study years. This study highlights that the human risk to acquire rodent-borne pathogens, as well as rodent-associated tick-borne pathogens is associated with the vole cycles in Northern Fennoscandia, yet with complex time lags.


Nature ◽  
2000 ◽  
Vol 408 (6809) ◽  
pp. 194-196 ◽  
Author(s):  
Rolf A. Ims ◽  
Harry P. Andreassen

2010 ◽  
Vol 4 (9) ◽  
pp. e830 ◽  
Author(s):  
Chonggang Xu ◽  
Mathieu Legros ◽  
Fred Gould ◽  
Alun L. Lloyd

PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22834 ◽  
Author(s):  
Trine Dalkvist ◽  
Richard M. Sibly ◽  
Chris J. Topping

Nature ◽  
10.1038/37261 ◽  
1997 ◽  
Vol 390 (6659) ◽  
pp. 456-456 ◽  
Author(s):  
Esa Ranta ◽  
Veijo Kaitala

Sign in / Sign up

Export Citation Format

Share Document