scholarly journals МОДЕЛЮВАННЯ ЧИСЕЛЬНОСТІ ГРИЗУНІВ У ЛІСОВИХ БІОТОПАХ ЗАХІДНОГО ПОДІЛЛЯ (НА ПРИКЛАДІ MYODES GLAREOLUS)

Author(s):  
I. M. Grod ◽  
I. V. Zagorodniuk ◽  
L. O. Shevchyk ◽  
N. Ya. Kravets

Monitoring and predicting the dynamics of abundance of species living in natural habitats is an important component stability analysis of ecosystem as well as dynamics and direction of change of biotic communities under global climate change and pressure of the alien species. The aim of the work was to build a matrix model and study the state of stabilisation of the dynamics of the bank vole population within the Leslie model. The object of the study was the population dynamics of Myodes glareolus Schreber, 1780 = Clethrionomys glareolus auct. The study is based on materials obtained during 2017–2019. This period covered one phase of the long-term population dynamics of the bank vole, named “population growth”. The research was carried out according to generally accepted methods. A total of 6400 trap-days were processed, and 358 forest fistulas were collected and studied. The intensity of harmful activity of rodents is due to the variability of the number of animals in the population. The quantitative population changes are the result of three factors: births, deaths, and migrations. The main condition for the existence of the species is the stability of the population, which is determined by the action of thecompensatory mechanisms. The growth phase of the bank vole lasted all three years of the research, the quantitative indicators were respectively: 2017 – 1.8 individuals per 100 trap-days; 2018 – 2.0 individuals per 100 trap-days; 2019 – 2.7 individuals per 100 trap-days. Low levels of the abundance in the spring of each year of the study, namely at the beginning of the breeding season (3.7 – 2.6 – 8.9 individuals per 100 trap-days). Favourable for the abundance growth was the sex ratio of the population (approximately 1:1), with some rise in the share of females, which decreases on the period of spring 2018 to autumn 2019). Some decrease in the share of immature individuals (4.5 – 3.9 – 3.1 %) is an indirect confirmation of the stability of puberty of animals with subsequent replenishment of the "stock", which led to accelerated reproduction and, consequently, provided prerequisites for further population growth. The causal mechanisms of population control established by us, without a doubt, can serve as a basis for further prognosis, of the number of pests in natural habitats. To predict population changes, the Leslie model, which is widely used in mathematical analyses of the abundance of both plant and animal groups, was chosen. The algorithm for building a matrix model, detailed in the article, has five following steps. The exponential nature of the actual and projected growth of the bank vole population during the five-year cycle (2017–2019 with a prognosis until 2023) revealed in the analysis can be explained not so much by the power of the species' reproductive potential as by the lack of the significant changes in habitat, caused by constant weather conditions, low individual mortality from predators and non-communicable diseases or other accidents. The application of the matrix model allowed to confirm the key role of the main compensatory mechanisms of population dynamics, as they contribute to the stabilisation of the population and, as a consequence, are an important condition for the existence of the species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahdi Aminikhah ◽  
Jukka T. Forsman ◽  
Esa Koskela ◽  
Tapio Mappes ◽  
Jussi Sane ◽  
...  

AbstractZoonotic diseases, caused by pathogens transmitted between other vertebrate animals and humans, pose a major risk to human health. Rodents are important reservoir hosts for many zoonotic pathogens, and rodent population dynamics affect the infection dynamics of rodent-borne diseases, such as diseases caused by hantaviruses. However, the role of rodent population dynamics in determining the infection dynamics of rodent-associated tick-borne diseases, such as Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato bacteria, have gained limited attention in Northern Europe, despite the multiannual abundance fluctuations, the so-called vole cycles, that characterise rodent population dynamics in the region. Here, we quantify the associations between rodent abundance and LB human cases and Puumala Orthohantavirus (PUUV) infections by using two time series (25-year and 9-year) in Finland. Both bank vole (Myodes glareolus) abundance as well as LB and PUUV infection incidence in humans showed approximately 3-year cycles. Without vector transmitted PUUV infections followed the bank vole host abundance fluctuations with two-month time lag, whereas tick-transmitted LB was associated with bank vole abundance ca. 12 and 24 months earlier. However, the strength of association between LB incidence and bank vole abundance ca. 12 months before varied over the study years. This study highlights that the human risk to acquire rodent-borne pathogens, as well as rodent-associated tick-borne pathogens is associated with the vole cycles in Northern Fennoscandia, yet with complex time lags.


2021 ◽  
Vol 29 (3) ◽  
pp. 211-216
Author(s):  
S. A. Мyakushko

Fifty years of continuous monitoring of the bank vole population (Myodes glareolus Schreber, 1780) revealed the phenomenon of shrinking body size of individuals, manifesting in significant reduction in their regular size and mass parameters. Field observations were carried out in the Kaniv Nature Reserve (Cherkasy region, Ukraine) during the first half of summer every year. In the forest biotopes of the reserve, this species is dominant in the group of rodents. The research period covered various stages of the existence of the protected ecosystem. Its small area, location ina densely populated region of Ukraine and interaction with neighboring territories which are involved in economic activities have always caused anthropogenic pressure on the protected area. Its nature and intensity determined the changes in the protection regime and the loss of reserve status in 1951–1968. Later, the territory of the reserve experienced increasing technogenic pressure accompanied by radioactive contamination. In this work, to compare their characteristics, four complete cycles of the density dynamics of the bank vole population (from depression to depression) were selected, the duration of which was 4–5 years. The first three cycles correspond to qualitatively different periods in the existence of the ecosystem and the population of the studied species, and the last one corresponds to the relatively current situation. Over the recent 30 years, the size and mass parameters of individuals of bank voles have deсreased, - this phenomenon was called shrinking. The process was also observed to tend towards consistent increase in scale. Differentiated analysis shows that in different sex and functional groups of animals, the decrease in exterior parameters can reach 30.3%. Shrinking is especially notable in the group of adult females that are actively involved in reproduction (compared to the second cycle, considered as the control, the decrease in parameters among these is 33.2%). Juveniles of this sex lost 31.8% of their fatness. Besides, in the population of voles, the proportion of large-size individuals was significantly reduced. The group of animals that overwintered significantly reduced its representation, and its existing representatives had much smaller exterior parameters. The studies found that the shrinking process is stable over time, which does not allow it to be considered a random phenomenon or an artifact of research. This phenomenon has no correlation with the amount or availability of food. It occurs against the background of numerous changes in various aspects of population dynamics, which gives grounds to associate it with anthropogenic changes in the environment. Shrinking is believed to be realized through various mechanisms. Firstly, as a result of mortality, the largest individuals and reproducing females with the greatest energy needs disappear from the population, and secondly, the growth and weight gain of young animals is slower. As a result, decrease in the size and mass parameters of individuals reduces their specific energy needs and allows the population to bring their requirements in correspondance with the capability of the environment to support a certain number of resource consumers. An analogy was drawn with the Dehnel’s phenomenon, described for shrews of the Sorex genus, whose body size and weight decrease is an element of preparation for experiencing adverse winter conditions. Based on similar concepts, the shrinking of its elements can be considered as a specific population strategy to maintain the ecological balance.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0134124 ◽  
Author(s):  
Daniela Reil ◽  
Christian Imholt ◽  
Jana Anja Eccard ◽  
Jens Jacob

2007 ◽  
Vol 158 (2) ◽  
pp. 461-466 ◽  
Author(s):  
LOWELL L. GETZ ◽  
JOYCE E. HOFMANN ◽  
MADAM K. OLI ◽  
BETTY MCGUIRE

2012 ◽  
Vol 60 (7) ◽  
pp. 461-477 ◽  
Author(s):  
S. Amirpour Haredasht ◽  
C. J. Taylor ◽  
P. Maes ◽  
W. W. Verstraeten ◽  
J. Clement ◽  
...  

2020 ◽  
Author(s):  
Guoliang Li ◽  
Xinrong Wan ◽  
Baofa Yin ◽  
Wanhong Wei ◽  
Xianglei Hou ◽  
...  

Abstract Climate variability has been widely documented to have bottom-up effects on the population dynamics of animals1,2, but the mechanisms underlying these effects have been rarely investigated through field manipulative experiments that control for confounding factors3. Here, we examined the effects of different rainfall patterns (i.e. timing and amount) on the population size of Brandt’s voles Lasiopodomys brandtii in semi-arid steppe grassland in Inner-Mongolia by conducting a 10-year (2010-2019) rainfall manipulation experiment in twelve 0.48 ha field enclosures. We found that moderate rainfall increase during the early rather than late growing season drove marked increases in population size through increasing the biomass of preferred plant species, whereas heavily increased rainfall produced no further increase in vole population growth. The increase in vole population size was more coupled with increased reproduction of overwintered voles and increased body mass of young-of-year than with better survival. Our results provide the first experimental evidence for the bottom-up effects of changing rainfall on the population growth of small mammals, and highlight the importance of rainfall timing on the population dynamics of wildlife in the steppe grassland environment.


Rangifer ◽  
1991 ◽  
Vol 11 (4) ◽  
pp. 24 ◽  
Author(s):  
L. L. Eberhardt

A useful theory for analyzing ungulate population dynamics is available in the form of equations based on the work of A. J. Lotka. Because the Leslie matrix model yields identical results and is widely known, it is convenient to label the resulting equations as the "Lotka-Leslie" model. The approach is useful for assessing population trends and attempting to predict the outcomes of various management actions. A broad list of applications to large mammals, and two examples specific to caribou are presented with a simple spreadsheet approach to calculations.


2015 ◽  
Author(s):  
Peter R Law ◽  
Brad Fike ◽  
Peter C Lent

Population dynamics is a central component of demography and critical for meta-population management, especially of endangered species. We employed complete individual life records to construct census data for a reintroduced black rhinoceros population over 22 years from its founding and investigated that population’s dynamics to inform black rhinoceros meta-population management practice and, more generally, megaherbivore ecology. Akaike’s information criterion applied to scalar models of population growth based on the generalized logistic unambiguously selected an exponential growth model (r = 0.102 ± 0.017), indicating a highly successful reintroduction, but yielding no evidence of density dependence. This result is consistent with, but does not confirm, the threshold model of density dependence that has influenced black rhinoceros meta-population management. Our analysis did support previous work contending that the generalized logistic is unreliable when fit to data that do not sample the entire range of possible population sizes. A stage-based matrix model of the exponential population dynamics exhibited mild transient behaviour. We found no evidence of environmental stochasticity, consistent with our previous studies of this population that found no influence of rainfall on demographic parameters. Process noise derived from demographic stochasticity, principally reflected in annual sex-specific recruitment numbers that differed from deterministic predictions of the matrix model. Demographically driven process noise should be assumed to be a component of megaherbivore population dynamics, as these populations are typically relatively small, and should be considered in managed removals and introductions. We suggest that an extended period of exponential growth is common for megaherbivore populations growing from small size and that an increase in age at first reproduction with increasing population size, manifest in the study population, may provide a warning of density feedback prior to detectable slowing of population growth rate for megaherbivores .


Author(s):  
Ken H. Andersen

This chapter considers population dynamics where the population changes over time, owing to environmental noise, fishing, or both. It first derives the population growth rate with various analytic and numeric approximations. Next, the chapter develops a full numerical solution to the McKendrick–von Foerster equations and uses it to create stylized recovery plans. Last, the chapter describes how a fish stock responds to fluctuations in the recruitment. From there, the chapter develops a general understanding of how a fish stock responds to idealized perturbations: a press perturbation and a continuously varying perturbation. It then makes general expectations of the responses to perturbations in general, citing three rules: lag, averaging, and nonmetabolic scaling of population growth rate.


Sign in / Sign up

Export Citation Format

Share Document