scholarly journals Curvature and the c-projective mobility of Kähler metrics with hamiltonian 2-forms

2016 ◽  
Vol 152 (8) ◽  
pp. 1555-1575 ◽  
Author(s):  
David M. J. Calderbank ◽  
Vladimir S. Matveev ◽  
Stefan Rosemann

The mobility of a Kähler metric is the dimension of the space of metrics with which it is c-projectively equivalent. The mobility is at least two if and only if the Kähler metric admits a nontrivial hamiltonian 2-form. After summarizing this relationship, we present necessary conditions for a Kähler metric to have mobility at least three: its curvature must have nontrivial nullity at every point. Using the local classification of Kähler metrics with hamiltonian 2-forms, we describe explicitly the Kähler metrics with mobility at least three and hence show that the nullity condition on the curvature is also sufficient, up to some degenerate exceptions. In an appendix, we explain how the classification may be related, generically, to the holonomy of a complex cone metric.

1992 ◽  
Vol 126 ◽  
pp. 89-101 ◽  
Author(s):  
Akira Fujiki

Let X be a compact Kähler manifold and γ Kähler class. For a Kàhler metric g on X we denote by Rg the scalar curvature on X According to Calabi [3][4], consider the functional defined on the set of all the Kähler metrics g whose Kähler forms belong to γ, where dvg is the volume form associated to g. Such a Kähler metric is called extremal if it gives a critical point of Ф. In particular, if Rg is constant, g is extremal. The converse is also true if dim L(X) = 0, where L(X) is the maximal connected linear algebraic subgroup of AutoX (cf. [5]). Note also that any Kähler-Einstein metric is of constant scalar curvature.


2011 ◽  
Vol 202 ◽  
pp. 77-81 ◽  
Author(s):  
Marco Brunella

AbstractWe show that every Kato surface admits a locally conformally Kähler metric.


2004 ◽  
Vol 01 (03) ◽  
pp. 253-263 ◽  
Author(s):  
ANDREA LOI

Let M be a compact Kähler manifold endowed with a real analytic and polarized Kähler metric g and let Tmω(x) be the corresponding Kempf's distortion function. In this paper we compute the coefficients of Tian–Yau–Zelditch asymptotic expansion of Tmω(x) using quantization techniques alternative to Lu's computations in [10].


2002 ◽  
Vol 132 (3) ◽  
pp. 471-479 ◽  
Author(s):  
ROGER BIELAWSKI

We prove the existence of a (unique) S1-invariant Ricci-flat Kähler metric on a neighbourhood of the zero section in the canonical bundle of a real-analytic Kähler manifold X, extending the metric on X.


2011 ◽  
Vol 202 ◽  
pp. 77-81 ◽  
Author(s):  
Marco Brunella

AbstractWe show that every Kato surface admits a locally conformally Kähler metric.


2004 ◽  
Vol 15 (06) ◽  
pp. 531-546 ◽  
Author(s):  
TOSHIKI MABUCHI

For an integral Kähler class on a compact connected complex manifold, an extremal Kähler metric, if any, in the class is unique up to the action of Aut 0(M). This generalizes a recent result of Donaldson (see [4] for cases of metrics of constant scalar curvature) and that of Chen [3] for c1(M)≤0.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Massimo Bianchi ◽  
Ugo Bruzzo ◽  
Pietro Fré ◽  
Dario Martelli

AbstractIn this paper, we analyze the relevance of the generalized Kronheimer construction for the gauge/gravity correspondence. We begin with the general structure of D3-brane solutions of type IIB supergravity on smooth manifolds $$Y^\Gamma $$ Y Γ that are supposed to be the crepant resolution of quotient singularities $$\mathbb {C}^3/\Gamma $$ C 3 / Γ with $$\Gamma $$ Γ a finite subgroup of SU(3). We emphasize that nontrivial 3-form fluxes require the existence of imaginary self-dual harmonic forms $$\omega ^{2,1}$$ ω 2 , 1 . Although excluded in the classical Kronheimer construction, they may be reintroduced by means of mass deformations. Next we concentrate on the other essential item for the D3-brane construction, namely, the existence of a Ricci-flat metric on $$Y^\Gamma $$ Y Γ . We study the issue of Ricci-flat Kähler metrics on such resolutions $$Y^\Gamma $$ Y Γ , with particular attention to the case $$\Gamma =\mathbb {Z}_4$$ Γ = Z 4 . We advance the conjecture that on the exceptional divisor of $$Y^\Gamma $$ Y Γ the Kronheimer Kähler metric and the Ricci-flat one, that is locally flat at infinity, coincide. The conjecture is shown to be true in the case of the Ricci-flat metric on $$\mathrm{tot} K_{{\mathbb {W}P}[112]}$$ tot K W P [ 112 ] that we construct, i.e., the total space of the canonical bundle of the weighted projective space $${\mathbb {W}P}[112]$$ W P [ 112 ] , which is a partial resolution of $$\mathbb {C}^3/\mathbb {Z}_4$$ C 3 / Z 4 . For the full resolution, we have $$Y^{\mathbb {Z}_4}={\text {tot}} K_{\mathbb {F}_{2}}$$ Y Z 4 = tot K F 2 , where $$\mathbb {F}_2$$ F 2 is the second Hirzebruch surface. We try to extend the proof of the conjecture to this case using the one-parameter Kähler metric on $$\mathbb {F}_2$$ F 2 produced by the Kronheimer construction as initial datum in a Monge–Ampère (MA) equation. We exhibit three formulations of this MA equation, one in terms of the Kähler potential, the other two in terms of the symplectic potential but with two different choices of the variables. In both cases, one can establish a series solution in powers of the variable along the fibers of the canonical bundle. The main property of the MA equation is that it does not impose any condition on the initial geometry of the exceptional divisor, rather it uniquely determines all the subsequent terms as local functionals of this initial datum. Although a formal proof is still missing, numerical and analytical results support the conjecture. As a by-product of our investigation, we have identified some new properties of this type of MA equations that we believe to be so far unknown.


Author(s):  
Vestislav Apostolov ◽  
David M. J. Calderbank ◽  
Paul Gauduchon

AbstractWe present a local classification of conformally equivalent but oppositely oriented 4-dimensional Kähler metrics which are toric with respect to a common 2-torus action. In the generic case, these “ambitoric” structures have an intriguing local geometry depending on a quadratic polynomialWe use this description to classify 4-dimensional Einstein metrics which are hermitian with respect to both orientations, as well as a class of solutions to the Einstein–Maxwell equations including riemannian analogues of the Plebański–Demiański metrics. Our classification can be viewed as a riemannian analogue of a result in relativity due to R. Debever, N. Kamran, and R. McLenaghan, and is a natural extension of the classification of selfdual Einstein hermitian 4-manifolds, obtained independently by R. Bryant and the first and third authors.These Einstein metrics are precisely the ambitoric structures with vanishing Bach tensor, and thus have the property that the associated toric Kähler metrics are extremal (in the sense of E. Calabi). Our main results also classify the latter, providing new examples of explicit extremal Kähler metrics. For both the Einstein–Maxwell and the extremal ambitoric structures,


1996 ◽  
Vol 07 (02) ◽  
pp. 245-254 ◽  
Author(s):  
SANTIAGO R. SIMANCA

For any complex manifold of Kähler type, the L2-norm of the scalar curvature of an extremal Kähler metric is a continuous function of the Kähler class. In particular, if a convergent sequence of Kähler classes are represented by extremal Kähler metrics, the corresponding sequence of L2-norms of the scalar curvatures is convergent. Similarly, the sequence of holomorphic vector fields associated with a sequence of extremal Kähler metrics with converging Kähler classes is convergent.


Sign in / Sign up

Export Citation Format

Share Document